No Arabic abstract
We present Penning-trap mass measurements of neutron-rich 44,47-50K and 49,50Ca isotopes carried out at the TITAN facility at TRIUMF-ISAC. The 44K mass measurement was performed with a charge-bred 4+ ion utilizing the TITAN EBIT, and agrees with the literature. The mass excesses obtained for 47K and 49,50Ca are more precise and agree with the values published in the 2003 Atomic Mass Evaluation (AME03). The 48,49,50K mass excesses are more precise than the AME03 values by more than one order of magnitude. For 48,49K, we find deviations by 7 sigma and 10 sigma, respectively. The new 49K mass excess lowers significantly the two-neutron separation energy at the neutron number N=30 compared with the separation energy calculated from the AME03 mass-excess values, and thus, increases the N=28 neutron-shell gap energy at Z=19 by approximately 1 MeV.
We report high-precision mass measurements of $^{50-55}$Sc isotopes performed at the LEBIT facility at NSCL and at the TITAN facility at TRIUMF. Our results provide a substantial reduction of their uncertainties and indicate significant deviations, up to 0.7 MeV, from the previously recommended mass values for $^{53-55}$Sc. The results of this work provide an important update to the description of emerging closed-shell phenomena at neutron numbers $N=32$ and $N=34$ above proton-magic $Z=20$. In particular, they finally enable a complete and precise characterization of the trends in ground state binding energies along the $N=32$ isotone, confirming that the empirical neutron shell gap energies peak at the doubly-magic $^{52}$Ca. Moreover, our data, combined with other recent measurements, does not support the existence of closed neutron shell in $^{55}$Sc at $N=34$. The results were compared to predictions from both emph{ab initio} and phenomenological nuclear theories, which all had success describing $N=32$ neutron shell gap energies but were highly disparate in the description of the $N=34$ isotone.
A precision mass investigation of the neutron-rich titanium isotopes $^{51-55}$Ti was performed at TRIUMFs Ion Trap for Atomic and Nuclear science (TITAN). The range of the measurements covers the $N=32$ shell closure and the overall uncertainties of the $^{52-55}$Ti mass values were significantly reduced. Our results confirm the existence of a weak shell effect at $N=32$, establishing the abrupt onset of this shell closure. Our data were compared with state-of-the-art textit{ab-initio} shell model calculations which, despite very successfully describing where the $N=32$ shell gap is strong, overpredict its strength and extent in titanium and heavier isotones. These measurements also represent the first scientific results of TITAN using the newly commissioned Multiple-Reflection Time-of-Flight Mass Spectrometer (MR-TOF-MS), substantiated by independent measurements from TITANs Penning trap mass spectrometer.
The region near Z=28, N=40 is a subject of great interest for nuclear structure studies due to spectroscopic signatures in $^{68}$Ni suggesting a subshell closure at N=40. Trends in nuclear masses and their derivatives provide a complementary approach to shell structure investigations via separation energies. Penning trap mass spectrometry has provided precise measurements for a number of nuclei in this region, however a complete picture of the mass surfaces has so far been limited by the large uncertainty remaining for nuclei with N > 40 along the iron and cobalt chains. Here we present the first Penning trap measurements of $^{68,69}$Co, performed at the Low-Energy Beam and Ion Trap facility at the National Superconducting Cyclotron Laboratory. In addition, we perform ab initio calculations of ground state and two-neutron separation energies of cobalt isotopes with the valence-space in-medium similarity renormalization group approach based on a particular set of two- and three-nucleon forces which predict saturation in infinite matter. We discuss the importance of these measurements and calculations for understanding the evolution of nuclear structure near $^{68}$Ni.
We report on the mass measurements of several neutron-rich $mathrm{Rb}$ and $mathrm{Sr}$ isotopes in the $A approx 100$ region with the TITAN Penning-trap mass spectrometer. Using highly charged ions in the charge state $q=10+$, the masses of $^{98,99}mathrm{Rb}$ and $^{98-100}mathrm{Sr}$ have been determined with a precision of $6 - 12 mathrm{keV}$, making their uncertainty negligible for r-process nucleosynthesis network calculations. The mass of $^{101}mathrm{Sr}$ has been determined directly for the first time with a precision eight times higher than the previous indirect measurement and a deviation of $3sigma$ when compared to the Atomic Mass Evaluation. We also confirm the mass of $^{100}mathrm{Rb}$ from a previous measurement. Furthermore, our data indicates the existance of a low-lying isomer with $80 mathrm{keV}$ excitation energy in $^{98}mathrm{Rb}$. We show that our updated mass values lead to minor changes in the r-process by calculating fractional abundances in the $Aapprox 100$ region of the nuclear chart.
Isobaric quintets provide the best test of the isobaric multiplet mass equation (IMME) and can uniquely identify higher order corrections suggestive of isospin symmetry breaking effects in the nuclear Hamiltonian. The Generalized IMME (GIMME) is a novel microscopic interaction theory that predicts an extension to the quadratic form of the IMME. Only the $A=20, 32$ $T=2$ quintets have the exotic $T_z = -2$ member ground state mass determined to high-precision by Penning trap mass spectrometry. In this work, we establish $A=36$ as the third high-precision $T=2$ isobaric quintet with the $T_z = -2$ member ground state mass measured by Penning trap mass spectrometry and provide the first test of the predictive power of the GIMME. A radioactive beam of neutron-deficient $^{36}$Ca was produced by projectile fragmentation at the National Superconducting Cyclotron Laboratory. The beam was thermalized and the mass of $^{36}$Ca$^+$ and $^{36}$Ca$^{2+}$ measured by the Time of Flight - Ion Cyclotron Resonance method in the LEBIT 9.4 T Penning trap. We measure the mass excess of $^{36}$Ca to be ME$ = -6483.6(56)$ keV, an improvement in precision by a factor of 6 over the literature value. The new datum is considered together with evaluated nuclear data on the $A=36$, $T=2$ quintet. We find agreement with the quadratic form of the IMME given by isospin symmetry, but only coarse qualitative agreement with predictions of the GIMME. A total of three isobaric quintets have their most exotic members measured by Penning trap mass spectrometry. The GIMME predictions in the $T = 2$ quintet appear to break down for $A = 32$ and greater.