Do you want to publish a course? Click here

A microrod-resonator Brillouin laser with 240 Hz absolute linewidth

108   0   0.0 ( 0 )
 Added by William Loh
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate an ultralow-noise microrod-resonator based laser that oscillates on the gain supplied by the stimulated Brillouin scattering optical nonlinearity. Microresonator Brillouin lasers are known to offer an outstanding frequency noise floor, which is limited by fundamental thermal fluctuations. Here, we show experimental evidence that thermal effects also dominate the close-to-carrier frequency fluctuations. The 6-mm diameter microrod resonator used in our experiments has a large optical mode area of ~100 {mu}m$^2$, and hence its 10 ms thermal time constant filters the close-to-carrier optical frequency noise. The result is an absolute laser linewidth of 240 Hz with a corresponding white-frequency noise floor of 0.1 Hz$^2$/Hz. We explain the steady-state performance of this laser by measurements of its operation state and of its mode detuning and lineshape. Our results highlight a mechanism for noise that is common to many microresonator devices due to the inherent coupling between intracavity power and mode frequency. We demonstrate the ability to reduce this noise through a feedback loop that stabilizes the intracavity power.



rate research

Read More

Photonic systems and technologies traditionally relegated to table-top experiments are poised to make the leap from the laboratory to real-world applications through integration. Stimulated Brillouin scattering (SBS) lasers, through their unique linewidth narrowing properties, are an ideal candidate to create highly-coherent waveguide integrated sources. In particular, cascaded-order Brillouin lasers show promise for multi-line emission, low-noise microwave generation and other optical comb applications. Photonic integration of these lasers can dramatically improve their stability to environmental and mechanical disturbances, simplify their packaging, and lower cost. While single-order silicon and cascade-order chalcogenide waveguide SBS lasers have been demonstrated, these lasers produce modest emission linewidths of 10-100 kHz. We report the first demonstration of a sub-Hz (~0.7 Hz) fundamental linewidth photonic-integrated Brillouin cascaded-order laser, representing a significant advancement in the state-of-the-art in integrated waveguide SBS lasers. This laser is comprised of a bus-ring resonator fabricated using an ultra-low loss Si3N4 waveguide platform. To achieve a sub-Hz linewidth, we leverage a high-Q, large mode volume, single polarization mode resonator that produces photon generated acoustic waves without phonon guiding. This approach greatly relaxes phase matching conditions between polarization modes, and optical and acoustic modes. Using a theory for cascaded-order Brillouin laser dynamics, we determine the fundamental emission linewidth of the first Stokes order by measuring the beat-note linewidth between and the relative powers of the first and third Stokes orders. Extension to the visible and near-IR wavebands is possible due to the low optical loss from 405 nm to 2350 nm, paving the way to photonic-integrated sub-Hz lasers for visible-light applications.
Ultralow noise, yet tunable lasers are a revolutionary tool in precision spectroscopy, displacement measurements at the standard quantum limit, and the development of advanced optical atomic clocks. Further applications include LIDAR, coherent communications, frequency synthesis, and precision sensors of strain, motion, and temperature. While all applications benefit from lower frequency noise, many also require a laser that is robust and compact. Here, we introduce a dual-microcavity laser that leverages one chip-integrable silica microresonator to generate tunable 1550 nm laser light via stimulated Brillouin scattering (SBS) and a second microresonator for frequency stabilization of the SBS light. This configuration reduces the fractional frequency noise to $7.8times10^{-14} 1/sqrt{Hz}$ at 10 Hz offset, which is a new regime of noise performance for a microresonator-based laser. Our system also features terahertz tunability and the potential for chip-level integration. We demonstrate the utility of our dual-microcavity laser by performing optical spectroscopy with hertz-level resolution.
We present the first demonstration of a narrow linewidth, waveguide-based Brillouin laser which is enabled by large Brillouin gain of a chalcogenide chip. The waveguides are equipped with vertical tapers for low loss coupling. Due to optical feedback for the Stokes wave, the lasing threshold is reduced to 360 mW, which is 5 times lower than the calculated single-pass Brillouin threshold for the same waveguide. The slope efficiency of the laser is found to be 30% and the linewidth of 100 kHz is measured using a self-heterodyne method.
A fiber laser is stabilized using a Calcium Fluoride (CaF2) whispering-gallery-mode resonator. It is set up using a semiconductor optical amplifier as a gain medium. The resonator is critically coupled through prisms, and used as a filtering element to suppress the laser linewidth. Using the self-heterodyne beat technique the linewidth is determined to be 13 kHz. This implies an enhancement factor of 10^3 with respect to the passive cavity linewidth. The three-cornered hat method shows a stability of 10^(-11) after 10 mu s.
Robust control and stabilization of optical frequency combs enables an extraordinary range of scientific and technological applications, including frequency metrology at extreme levels of precision, novel spectroscopy of quantum gases and of molecules from visible wavelengths to the far infrared, searches for exoplanets, and photonic waveform synthesis. Here we report on the stabilization of a microresonator-based optical comb (microcomb) by way of mechanical actuation. This represents an important step in the development of microcomb technology, which offers a pathway toward fully-integrated comb systems. Residual fluctuations of our 32.6 GHz microcomb line spacing reach a record stability level of $5times10^{-15}$ for 1 s averaging, thereby highlighting the potential of microcombs to support modern optical frequency standards. Furthermore, measurements of the line spacing with respect to an independent frequency reference reveal the effective stabilization of different spectral slices of the comb with a $<$0.5 mHz variation among 140 comb lines spanning 4.5 THz. These experiments were performed with newly-developed microrod resonators, which were fabricated using a CO$_2$-laser-machining technique.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا