Do you want to publish a course? Click here

A Framework to Explore the Knowledge Structure of Multidisciplinary Research Fields

139   0   0.0 ( 0 )
 Added by Shahadat Uddin
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

Understanding emerging areas of a multidisciplinary research field is crucial for researchers,policymakers and other stakeholders. For them a knowledge structure based on longitudinal bibliographic data can be an effective instrument. But with the vast amount of available online information it is often hard to understand the knowledge structure for data. In this paper, we present a novel approach for retrieving online bibliographic data and propose a framework for exploring knowledge structure. We also present several longitudinal analyses to interpret and visualize the last 20 years of published obesity research data.



rate research

Read More

The Open Research Knowledge Graph (ORKG) provides machine-actionable access to scholarly literature that habitually is written in prose. Following the FAIR principles, the ORKG makes traditional, human-coded knowledge findable, accessible, interoperable, and reusable in a structured manner in accordance with the Linked Open Data paradigm. At the moment, in ORKG papers are described manually, but in the long run the semantic depth of the literature at scale needs automation. Operational Research is a suitable test case for this vision because the mathematical field and, hence, its publication habits are highly structured: A mundane problem is formulated as a mathematical model, solved or approximated numerically, and evaluated systematically. We study the existing literature with respect to the Assembly Line Balancing Problem and derive a semantic description in accordance with the ORKG. Eventually, selected papers are ingested to test the semantic description and refine it further.
The appeal of metric evaluation of research impact has attracted considerable interest in recent times. Although the public at large and administrative bodies are much interested in the idea, scientists and other researchers are much more cautious, insisting that metrics are but an auxiliary instrument to the qualitative peer-based judgement. The goal of this article is to propose availing of such a well positioned construct as domain taxonomy as a tool for directly assessing the scope and quality of research. We first show how taxonomies can be used to analyse the scope and perspectives of a set of research projects or papers. Then we proceed to define a research team or researchers rank by those nodes in the hierarchy that have been created or significantly transformed by the results of the researcher. An experimental test of the approach in the data analysis domain is described. Although the concept of taxonomy seems rather simplistic to describe all the richness of a research domain, its changes and use can be made transparent and subject to open discussions.
Current science communication has a number of drawbacks and bottlenecks which have been subject of discussion lately: Among others, the rising number of published articles makes it nearly impossible to get an overview of the state of the art in a certain field, or reproducibility is hampered by fixed-length, document-based publications which normally cannot cover all details of a research work. Recently, several initiatives have proposed knowledge graphs (KGs) for organising scientific information as a solution to many of the current issues. The focus of these proposals is, however, usually restricted to very specific use cases. In this paper, we aim to transcend this limited perspective by presenting a comprehensive analysis of requirements for an Open Research Knowledge Graph (ORKG) by (a) collecting daily core tasks of a scientist, (b) establishing their consequential requirements for a KG-based system, (c) identifying overlaps and specificities, and their coverage in current solutions. As a result, we map necessary and desirable requirements for successful KG-based science communication, derive implications and outline possible solutions.
Analysing research trends and predicting their impact on academia and industry is crucial to gain a deeper understanding of the advances in a research field and to inform critical decisions about research funding and technology adoption. In the last years, we saw the emergence of several publicly-available and large-scale Scientific Knowledge Graphs fostering the development of many data-driven approaches for performing quantitative analyses of research trends. This chapter presents an innovative framework for detecting, analysing, and forecasting research topics based on a large-scale knowledge graph characterising research articles according to the research topics from the Computer Science Ontology. We discuss the advantages of a solution based on a formal representation of topics and describe how it was applied to produce bibliometric studies and innovative tools for analysing and predicting research dynamics.
We revisit our recent study [Predicting results of the Research Excellence Framework using departmental h-index, Scientometrics, 2014, 1-16; arXiv:1411.1996] in which we attempted to predict outcomes of the UKs Research Excellence Framework (REF~2014) using the so-called departmental $h$-index. Here we report that our predictions failed to anticipate with any accuracy either overall REF outcomes or movements of individual institutions in the rankings relative to their positions in the previous Research Assessment Exercise (RAE~2008).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا