Do you want to publish a course? Click here

Characterization of finite groups generated by reflections and rotations

64   0   0.0 ( 0 )
 Added by Christian Lange
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We characterize finite groups G generated by orthogonal transformations in a finite-dimensional Euclidean space V whose fixed point subspace has codimension one or two in terms of the corresponding quotient space V/G with its quotient piecewise linear structure.



rate research

Read More

We survey the existing parts of a classification of finite groups generated by orthogonal transformations in a finite-dimensional Euclidean space whose fixed point subspace has codimension one or two and extend it to a complete classification. These groups naturally arise in the study of the quotient of a Euclidean space by a finite orthogonal group and hence in the theory of orbifolds.
In previous work, the authors confirmed the speculation of J. G. Thompson that certain multiquadratic fields are generated by specified character values of sufficiently large alternating groups $A_n$. Here we address the natural generalization of this speculation to the finite general linear groups $mathrm{GL}_mleft(mathbb{F}_qright)$ and $mathrm{SL}_2left(mathbb{F}_qright)$.
If $G$ is a free product of finite groups, let $Sigma Aut_1(G)$ denote all (necessarily symmetric) automorphisms of $G$ that do not permute factors in the free product. We show that a McCullough-Miller [D. McCullough and A. Miller, {em Symmetric Automorphisms of Free Products}, Mem. Amer. Math. Soc. 122 (1996), no. 582] and Guti{e}rrez-Krsti{c} [M. Guti{e}rrez and S. Krsti{c}, {em Normal forms for the group of basis-conjugating automorphisms of a free group}, International Journal of Algebra and Computation 8 (1998) 631-669] derived (also see Bogley-Krsti{c} [W. Bogley and S. Krsti{c}, {em String groups and other subgroups of $Aut(F_n)$}, preprint] space of pointed trees is an $underline{E} Sigma Aut_1(G)$-space for these groups.
We consider algebras with basis numerated by elements of a group $G.$ We fix a function $f$ from $Gtimes G$ to a ground field and give a multiplication of the algebra which depends on $f$. We study the basic properties of such algebras. In particular, we find a condition on $f$ under which the corresponding algebra is a Leibniz algebra. Moreover, for a given subgroup $hat G$ of $G$ we define a $hat G$-periodic algebra, which corresponds to a $hat G$-periodic function $f,$ we establish a criterion for the right nilpotency of a $hat G$-periodic algebra. In addition, for $G=mathbb Z$ we describe all $2mathbb Z$- and $3mathbb Z$-periodic algebras. Some properties of $nmathbb Z$-periodic algebras are obtained.
Let $$1 to H to G to Q to 1$$ be an exact sequence where $H= pi_1(S)$ is the fundamental group of a closed surface $S$ of genus greater than one, $G$ is hyperbolic and $Q$ is finitely generated free. The aim of this paper is to provide sufficient conditions to prove that $G$ is cubulable and construct examples satisfying these conditions. The main result may be thought of as a combination theorem for virtually special hyperbolic groups when the amalgamating subgroup is not quasiconvex. Ingredients include the theory of tracks, the quasiconvex hierarchy theorem of Wise, the distance estimates in the mapping class group from subsurface projections due to Masur-Minsky and the model geometry for doubly degenerate Kleinian surface groups used in the proof of the ending lamination theorem.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا