Do you want to publish a course? Click here

On automorphism groups of free products of finite groups, I: Proper Actions

74   0   0.0 ( 0 )
 Added by Craig A. Jensen
 Publication date 2003
  fields
and research's language is English




Ask ChatGPT about the research

If $G$ is a free product of finite groups, let $Sigma Aut_1(G)$ denote all (necessarily symmetric) automorphisms of $G$ that do not permute factors in the free product. We show that a McCullough-Miller [D. McCullough and A. Miller, {em Symmetric Automorphisms of Free Products}, Mem. Amer. Math. Soc. 122 (1996), no. 582] and Guti{e}rrez-Krsti{c} [M. Guti{e}rrez and S. Krsti{c}, {em Normal forms for the group of basis-conjugating automorphisms of a free group}, International Journal of Algebra and Computation 8 (1998) 631-669] derived (also see Bogley-Krsti{c} [W. Bogley and S. Krsti{c}, {em String groups and other subgroups of $Aut(F_n)$}, preprint] space of pointed trees is an $underline{E} Sigma Aut_1(G)$-space for these groups.



rate research

Read More

254 - Alden Walker 2013
We give an algorithm to compute stable commutator length in free products of cyclic groups which is polynomial time in the length of the input, the number of factors, and the orders of the finite factors. We also describe some experimental and theoretical applications of this algorithm.
318 - Andrew Putman 2021
A beautifully simple free generating set for the commutator subgroup of a free group was constructed by Tomaszewski. We give a new geometric proof of his theorem, and show how to give a similar free generating set for the commutator subgroup of a surface group. We also give a simple representation-theoretic description of the structure of the abelianizations of these commutator subgroups and calculate their homology.
We study two actions of big mapping class groups. The first is an action by isometries on a Gromov-hyperbolic graph. The second is an action by homeomorphisms on a circle in which the vertices of the graph naturally embed. The first two parts of the paper are devoted to the definition of objects and tools needed to introduce these two actions; in particular, we define and prove the existence of equators for infinite type surfaces, we define the hyperbolic graph and the circle needed for the actions, and we describe the Gromov-boundary of the graph using the embedding of its vertices in the circle. The third part focuses on some fruitful relations between the dynamics of the two actions. For example, we prove that loxodromic elements (for the first action) necessarily have rational rotation number (for the second action). In addition, we are able to construct non trivial quasimorphisms on many subgroups of big mapping class groups, even if they are not acylindrically hyperbolic.
We show that a relatively hyperbolic group quasi-isometrically embeds in a product of finitely many trees if the peripheral subgroups do, and we provide an estimate on the minimal number of trees needed. Applying our result to the case of 3-manifolds, we show that fundamental groups of closed 3-manifolds have linearly controlled asymptotic dimension at most 8. To complement this result, we observe that fundamental groups of Haken 3-manifolds with non-empty boundary have asymptotic dimension 2.
260 - Takefumi Nosaka 2021
We develop nilpotently $p$-localization of knot groups in terms of the (symplectic) automorphism groups of free nilpotent groups. We show that any map from the set of conjugacy classes of the outer automorphism groups yields a knot invariant. We also investigate the automorphism groups and compute the resulting knot invariants.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا