Do you want to publish a course? Click here

Integrating Research Data Management into Geographical Information Systems

148   0   0.0 ( 0 )
 Added by Christian Jacobs
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

Ocean modelling requires the production of high-fidelity computational meshes upon which to solve the equations of motion. The production of such meshes by hand is often infeasible, considering the complexity of the bathymetry and coastlines. The use of Geographical Information Systems (GIS) is therefore a key component to discretising the region of interest and producing a mesh appropriate to resolve the dynamics. However, all data associated with the production of a mesh must be provided in order to contribute to the overall recomputability of the subsequent simulation. This work presents the integration of research data management in QMesh, a tool for generating meshes using GIS. The tool uses the PyRDM library to provide a quick and easy way for scientists to publish meshes, and all data required to regenerate them, to persistent online repositories. These repositories are assigned unique identifiers to enable proper citation of the meshes in journal articles.



rate research

Read More

Lifecycle models for research data are often abstract and simple. This comes at the danger of oversimplifying the complex concepts of research data management. The analysis of 90 different lifecycle models lead to two approaches to assess the quality of these models. While terminological issues make direct comparisons of models hard, an empirical evaluation seems possible.
Without sufficient information about researchers data sharing, there is a risk of mismatching FAIR data service efforts with the needs of researchers. This study describes a methodology where departmental publications are used to analyse the ways in which computer scientists share research data. All journal articles published by researchers in the computer science department of the case studys university during 2019 were extracted for scrutiny from the current research information system. For these 193 articles, a coding framework was developed to capture the key elements of acquiring and sharing research data. Furthermore, a rudimentary classification of the main study types exhibited in the investigated articles was developed to accommodate the multidisciplinary nature of the case departments research agenda. Human interaction and intervention studies often collected original data, whereas research on novel computational methods and life sciences more frequently used openly available data. Articles that made data available for reuse were most often in life science studies, whereas data sharing was least frequent in human interaction studies. The use of open code was most frequent in life science studies and novel computational methods. The findings highlight that multidisciplinary research organisations may include diverse subfields that have their own cultures of data sharing, and suggest that research information system-based methods may be valuable additions to the questionnaire and interview methodologies eliciting insight into researchers data sharing. The collected data and coding framework are provided as open data to facilitate future research.
In the social sciences, researchers search for information on the Web, but this is most often distributed on different websites, search portals, digital libraries, data archives, and databases. In this work, we present an integrated search system for social science information that allows finding information around research data in a single digital library. Users can search for research data sets, publications, survey variables, questions from questionnaires, survey instruments, and tools. Information items are linked to each other so that users can see, for example, which publications contain data citations to research data. The integration and linking of different kinds of information increase their visibility so that it is easier for researchers to find information for re-use. In a log-based usage study, we found that users search across different information types, that search sessions contain a high rate of positive signals and that link information is often explored.
114 - Jun Quan , Meng Yang , Qiang Gan 2021
Rule-based dialogue management is still the most popular solution for industrial task-oriented dialogue systems for their interpretablility. However, it is hard for developers to maintain the dialogue logic when the scenarios get more and more complex. On the other hand, data-driven dialogue systems, usually with end-to-end structures, are popular in academic research and easier to deal with complex conversations, but such methods require plenty of training data and the behaviors are less interpretable. In this paper, we propose a method to leverages the strength of both rule-based and data-driven dialogue managers (DM). We firstly introduce the DM of Carina Dialog System (CDS, an advanced industrial dialogue system built by Microsoft). Then we propose the model-trigger design to make the DM trainable thus scalable to scenario changes. Furthermore, we integrate pre-trained models and empower the DM with few-shot capability. The experimental results demonstrate the effectiveness and strong few-shot capability of our method.
The data underlying scientific papers should be accessible to researchers both now and in the future, but how best can we ensure that these data are available? Here we examine the effectiveness of four approaches to data archiving: no stated archiving policy, recommending (but not requiring) archiving, and t
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا