No Arabic abstract
Without sufficient information about researchers data sharing, there is a risk of mismatching FAIR data service efforts with the needs of researchers. This study describes a methodology where departmental publications are used to analyse the ways in which computer scientists share research data. All journal articles published by researchers in the computer science department of the case studys university during 2019 were extracted for scrutiny from the current research information system. For these 193 articles, a coding framework was developed to capture the key elements of acquiring and sharing research data. Furthermore, a rudimentary classification of the main study types exhibited in the investigated articles was developed to accommodate the multidisciplinary nature of the case departments research agenda. Human interaction and intervention studies often collected original data, whereas research on novel computational methods and life sciences more frequently used openly available data. Articles that made data available for reuse were most often in life science studies, whereas data sharing was least frequent in human interaction studies. The use of open code was most frequent in life science studies and novel computational methods. The findings highlight that multidisciplinary research organisations may include diverse subfields that have their own cultures of data sharing, and suggest that research information system-based methods may be valuable additions to the questionnaire and interview methodologies eliciting insight into researchers data sharing. The collected data and coding framework are provided as open data to facilitate future research.
Ocean modelling requires the production of high-fidelity computational meshes upon which to solve the equations of motion. The production of such meshes by hand is often infeasible, considering the complexity of the bathymetry and coastlines. The use of Geographical Information Systems (GIS) is therefore a key component to discretising the region of interest and producing a mesh appropriate to resolve the dynamics. However, all data associated with the production of a mesh must be provided in order to contribute to the overall recomputability of the subsequent simulation. This work presents the integration of research data management in QMesh, a tool for generating meshes using GIS. The tool uses the PyRDM library to provide a quick and easy way for scientists to publish meshes, and all data required to regenerate them, to persistent online repositories. These repositories are assigned unique identifiers to enable proper citation of the meshes in journal articles.
The data paper, an emerging scholarly genre, describes research datasets and is intended to bridge the gap between the publication of research data and scientific articles. Research examining how data papers report data events, such as data transactions and manipulations, is limited. The research reported on in this paper addresses this limitation and investigated how data events are inscribed in data papers. A content analysis was conducted examining the full texts of 82 data papers, drawn from the curated list of data papers connected to the Global Biodiversity Information Facility (GBIF). Data events recorded for each paper were organized into a set of 17 categories. Many of these categories are described together in the same sentence, which indicates the messiness of data events in the laboratory space. The findings challenge the degrees to which data papers are a distinct genre compared to research papers and they describe data-centric research processes in a through way. This paper also discusses how our results could inform a better data publication ecosystem in the future.
The data underlying scientific papers should be accessible to researchers both now and in the future, but how best can we ensure that these data are available? Here we examine the effectiveness of four approaches to data archiving: no stated archiving policy, recommending (but not requiring) archiving, and t
In the social sciences, researchers search for information on the Web, but this is most often distributed on different websites, search portals, digital libraries, data archives, and databases. In this work, we present an integrated search system for social science information that allows finding information around research data in a single digital library. Users can search for research data sets, publications, survey variables, questions from questionnaires, survey instruments, and tools. Information items are linked to each other so that users can see, for example, which publications contain data citations to research data. The integration and linking of different kinds of information increase their visibility so that it is easier for researchers to find information for re-use. In a log-based usage study, we found that users search across different information types, that search sessions contain a high rate of positive signals and that link information is often explored.
Our study is one of the first examples of multidimensional and longitudinal disciplinary analysis at the national level based on Crossref data. We present a large-scale quantitative analysis of Ukrainian economics. This study is not yet another example of research aimed at ranking of local journals, authors or institutions, but rather exploring general tendencies that can be compared to other countries or regions. We study different aspects of Ukrainian economics output. In particular, the collaborative nature, geographic landscape and some peculiarities of citation statistics are investigated. We have found that Ukrainian economics is characterized by a comparably small share of co-authored publications, however, it demonstrates the tendency towards more collaborative output. Based on our analysis, we discuss specific and universal features of Ukrainian economic research. The importance of supporting various initiatives aimed at enriching open scholarly metadata is considered. A comprehensive and high-quality meta description of publications is probably the shortest path to a better understanding of national trends, especially for non-English speaking countries. The results of our analysis can be used to better understand Ukrainian economic research and support research policy decisions.