No Arabic abstract
Bus transportation is considered as one of the most convenient and cheapest modes of public transportation in Indian cities. Due to their cost-effectiveness and wide reachability, they help a significant portion of the human population in cities to reach their destinations every day. Although from a transportation point of view they have numerous advantages over other modes of public transportation, they also pose a serious threat of contagious diseases spreading throughout the city. The presence of numerous local spatial constraints makes the process and extent of epidemic spreading extremely difficult to predict. Also, majority of the studies have focused on the contagion processes on scale-free network topologies whereas, spatially-constrained real-world networks such as, bus networks exhibit a wide-spectrum of network topology. Therefore, we aim in this study to understand this complex dynamical process of epidemic outbreak and information diffusion on the bus networks for six different Indian cities using SI and SIR models. This will allow us to identify epidemic thresholds for these networks which will help us in controlling outbreaks by developing node-based immunization techniques.
The vast majority of strategies aimed at controlling contagion processes on networks considers the connectivity pattern of the system as either quenched or annealed. However, in the real world many networks are highly dynamical and evolve in time concurrently to the contagion process. Here, we derive an analytical framework for the study of control strategies specifically devised for time-varying networks. We consider the removal/immunization of individual nodes according the their activity in the network and develop a block variable mean-field approach that allows the derivation of the equations describing the evolution of the contagion process concurrently to the network dynamic. We derive the critical immunization threshold and assess the effectiveness of the control strategies. Finally, we validate the theoretical picture by simulating numerically the information spreading process and control strategies in both synthetic networks and a large-scale, real-world mobile telephone call dataset
The threshold model has been widely adopted as a classic model for studying contagion processes on social networks. We consider asymmetric individual interactions in social networks and introduce a persuasion mechanism into the threshold model. Specifically, we study a combination of adoption and persuasion in cascading processes on complex networks. It is found that with the introduction of the persuasion mechanism, the system may become more vulnerable to global cascades, and the effects of persuasion tend to be more significant in heterogeneous networks than those in homogeneous networks: a comparison between heterogeneous and homogeneous networks shows that under weak persuasion, heterogeneous networks tend to be more robust against random shocks than homogeneous networks; whereas under strong persuasion, homogeneous networks are more stable. Finally, we study the effects of adoption and persuasion threshold heterogeneity on systemic stability. Though both heterogeneities give rise to global cascades, the adoption heterogeneity has an overwhelmingly stronger impact than the persuasion heterogeneity when the network connectivity is sufficiently dense.
Numerous urban indicators scale with population in a power law across cities, but whether the cross-sectional scaling law is applicable to the temporal growth of individual cities is unclear. Here we first find two paradoxical scaling relationships that urban built-up area sub-linearly scales with population across cities, but super-linearly scales with population over time in most individual cities because urban land expands faster than population grows. Different cities have diverse temporal scaling exponents and one city even has opposite temporal scaling regimes during two periods, strongly supporting the absence of single temporal scaling and further illustrating the failure of cross-sectional urban scaling in predicting temporal growth of cities. We propose a conceptual model that can clarify the essential difference and also connections between the cross-sectional scaling law and temporal trajectories of cities. Our model shows that cities have an extra growth of built-up area over time besides the supposed growth predicted by the cross-sectional scaling law. Disparities of extra growth among different-sized cities change the cross-sectional scaling exponent. Further analyses of GDP and other indicators confirm the contradiction between cross-sectional and temporal scaling relationships and the validity of the conceptual model. Our findings may open a new avenue towards the science of cities.
Forecasting the evolution of contagion dynamics is still an open problem to which mechanistic models only offer a partial answer. To remain mathematically or computationally tractable, these models must rely on simplifying assumptions, thereby limiting the quantitative accuracy of their predictions and the complexity of the dynamics they can model. Here, we propose a complementary approach based on deep learning where the effective local mechanisms governing a dynamic on a network are learned from time series data. Our graph neural network architecture makes very few assumptions about the dynamics, and we demonstrate its accuracy using different contagion dynamics of increasing complexity. By allowing simulations on arbitrary network structures, our approach makes it possible to explore the properties of the learned dynamics beyond the training data. Finally, we illustrate the applicability of our approach using real data of the COVID-19 outbreak in Spain. Our results demonstrate how deep learning offers a new and complementary perspective to build effective models of contagion dynamics on networks.
Through the past decade the field of network science has established itself as a common ground for the cross-fertilization of exciting inter-disciplinary studies which has motivated researchers to model almost every physical system as an interacting network consisting of nodes and links. Although public transport networks such as airline and railway networks have been extensively studied, the status of bus networks still remains in obscurity. In developing countries like India, where bus networks play an important role in day-to-day commutation, it is of significant interest to analyze its topological structure and answer some of the basic questions on its evolution, growth, robustness and resiliency. In this paper, we model the bus networks of major Indian cities as graphs in textit{L}-space, and evaluate their various statistical properties using concepts from network science. Our analysis reveals a wide spectrum of network topology with the common underlying feature of small-world property. We observe that the networks although, robust and resilient to random attacks are particularly degree-sensitive. Unlike real-world networks, like Internet, WWW and airline, which are virtual, bus networks are physically constrained. The presence of various geographical and economic constraints allow these networks to evolve over time. Our findings therefore, throw light on the evolution of such geographically and socio-economically constrained networks which will help us in designing more efficient networks in the future.