Do you want to publish a course? Click here

Regularity properties of spheres in homogeneous groups

104   0   0.0 ( 0 )
 Added by Enrico Le Donne
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We study left-invariant distances on Lie groups for which there exists a one-parameter family of homothetic automorphisms. The main examples are Carnot groups, in particular the Heisenberg group with the standard dilations. We are interested in criteria implying that, locally and away from the diagonal, the distance is Euclidean Lipschitz and, consequently, that the metric spheres are boundaries of Lipschitz domains in the Euclidean sense. In the first part of the paper, we consider geodesic distances. In this case, we actually prove the regularity of the distance in the more general context of sub-Finsler manifolds with no abnormal geodesics. Secondly, for general groups we identify an algebraic criterium in terms of the dilating automorphisms, which for example makes us conclude the regularity of homogeneous distances on the Heisenberg group.In such a group, we analyze in more details the geometry of metric spheres. We also provide examples of homogeneous groups where spheres presents cusps.



rate research

Read More

82 - Enrico Le Donne 2016
Carnot groups are distinguished spaces that are rich of structure: they are those Lie groups equipped with a path distance that is invariant by left-translations of the group and admit automorphisms that are dilations with respect to the distance. We present the basic theory of Carnot groups together with several remarks. We consider them as special cases of graded groups and as homogeneous metric spaces. We discuss the regularity of isometries in the general case of Carnot-Caratheodory spaces and of nilpotent metric Lie groups.
We study locally compact metric spaces that enjoy various forms of homogeneity with respect to Mobius self-homeomorphisms. We investigate connections between such homogeneity and the combination of isometric homogeneity with invertibility. In particular, we provide a new characterization of snowflakes of boundaries of rank-one symmetric spaces of non-compact type among locally compact and connected metric spaces. Furthermore, we investigate the metric implications of homogeneity with respect to uniformly strongly quasi-Mobius self-homeomorphisms, connecting such homogeneity with the combination of uniform bi-Lipschitz homogeneity and quasi-invertibility. In this context we characterize spaces containing a cut point and provide several metric properties of spaces containing no cut points. These results are motivated by a desire to characterize the snowflakes of boundaries of rank-one symmetric spaces up to bi-Lipschitz equivalence.
We give a construction of direct limits in the category of complete metric scalable groups and provide sufficient conditions for the limit to be an infinite-dimensional Carnot group. We also prove a Rademacher-type theorem for such limits.
We construct examples of smooth 4-dimensional manifolds M supporting a locally CAT(0)-metric, whose universal cover X satisfy Hruskas isolated flats condition, and contain 2-dimensional flats F with the property that the boundary at infinity of F defines a nontrivial knot in the boundary at infinity of X. As a consequence, we obtain that the fundamental group of M cannot be isomorphic to the fundamental group of any Riemannian manifold of nonpositive sectional curvature. In particular, M is a locally CAT(0)-manifold which does not support any Riemannian metric of nonpositive sectional curvature.
Let $G$ be a finite group with symmetric generating set $S$, and let $c = max_{R > 0} |B(2R)|/|B(R)|$ be the doubling constant of the corresponding Cayley graph, where $B(R)$ denotes an $R$-ball in the word-metric with respect to $S$. We show that the multiplicity of the $k$th eigenvalue of the Laplacian on the Cayley graph of $G$ is bounded by a function of only $c$ and $k$. More specifically, the multiplicity is at most $exp((log c)(log c + log k))$. Similarly, if $X$ is a compact, $n$-dimensional Riemannian manifold with non-negative Ricci curvature, then the multiplicity of the $k$th eigenvalue of the Laplace-Beltrami operator on $X$ is at most $exp(n^2 + n log k)$. The first result (for $k=2$) yields the following group-theoretic application. There exists a normal subgroup $N$ of $G$, with $[G : N] leq alpha(c)$, and such that $N$ admits a homomorphism onto the cyclic group $Z_M$, where $M geq |G|^{delta(c)}$ and $alpha(c), delta(c) > 0$ are explicit functions depending only on $c$. This is the finitary analog of a theorem of Gromov which states that every infinite group of polynomial growth has a subgroup of finite index which admits a homomorphism onto the integers. This addresses a question of Trevisan, and is proved by scaling down Kleiners proof of Gromovs theorem. In particular, we replace the space of harmonic functions of fixed polynomial growth by the second eigenspace of the Laplacian on the Cayley graph of $G$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا