No Arabic abstract
We construct examples of smooth 4-dimensional manifolds M supporting a locally CAT(0)-metric, whose universal cover X satisfy Hruskas isolated flats condition, and contain 2-dimensional flats F with the property that the boundary at infinity of F defines a nontrivial knot in the boundary at infinity of X. As a consequence, we obtain that the fundamental group of M cannot be isomorphic to the fundamental group of any Riemannian manifold of nonpositive sectional curvature. In particular, M is a locally CAT(0)-manifold which does not support any Riemannian metric of nonpositive sectional curvature.
In this paper we describe the classification of all the geometric fibrations of a closed flat Riemannian 4-manifold over a 1-orbifold.
We prove that sub-Riemannian manifolds are infinitesimally Hilbertian (i.e., the associated Sobolev space is Hilbert) when equipped with an arbitrary Radon measure. The result follows from an embedding of metric derivations into the space of square-integrable sections of the horizontal bundle, which we obtain on all weighted sub-Finsler manifolds. As an intermediate tool, of independent interest, we show that any sub-Finsler distance can be monotonically approximated from below by Finsler ones. All the results are obtained in the general setting of possibly rank-varying structures.
We give another proof of Toyodas theorem that describes 5-point subpaces in CAT(0) length spaces
For a k-flat F inside a locally compact CAT(0)-space X, we identify various conditions that ensure that F bounds a (k+1)-dimensional half flat in X. Our conditions are formulated in terms of the ultralimit of X. As applications, we obtain (1) constraints on the behavior of quasi-isometries between tocally compact CAT(0)-spaces, (2) constraints on the possible non-positively curved Riemannian metrics supported by certain manifolds, and (3) a correspondence between metric splittings of a complete, simply connected, non-positively curved Riemannian manifold and the metric splittings of its asymptotic cones. Furthermore, combining our results with the Ballmann, Burns-Spatzier rigidity theorem and the classical Mostow rigidity theorem, we also obtain (4) a new proof of Gromovs rigidity theorem for higher rank locally symmetric spaces.
In this article we study the validity of the Whitney $C^1$ extension property for horizontal curves in sub-Riemannian manifolds endowed with 1-jets that satisfy a first-order Taylor expansion compatibility condition. We first consider the equiregular case, where we show that the extension property holds true whenever a suitable non-singularity property holds for the input-output maps on the Carnot groups obtained by nilpotent approximation. We then discuss the case of sub-Riemannian manifolds with singular points and we show that all step-2 manifolds satisfy the $C^1$ extension property. We conclude by showing that the $C^1$ extension property implies a Lusin-like approximation theorem for horizontal curves on sub-Riemannian manifolds.