No Arabic abstract
Heterogeneous adoption thresholds exist widely in social contagions, but were always neglected in previous studies. We first propose a non-Markovian spreading threshold model with general adoption threshold distribution. In order to understand the effects of heterogeneous adoption thresholds quantitatively, an edge-based compartmental theory is developed for the proposed model. We use a binary spreading threshold model as a specific example, in which some individuals have a low adoption threshold (i.e., activists) while the remaining ones hold a relatively high adoption threshold (i.e., bigots), to demonstrate that heterogeneous adoption thresholds markedly affect the final adoption size and phase transition. Interestingly, the first-order, second-order and hybrid phase transitions can be found in the system. More importantly, there are two different kinds of crossover phenomena in phase transition for distinct values of bigots adoption threshold: a change from first-order or hybrid phase transition to the second-order phase transition. The theoretical predictions based on the suggested theory agree very well with the results of numerical simulations.
Individuals are always limited by some inelastic resources, such as time and energy, which restrict them to dedicate to social interaction and limit their contact capacity. Contact capacity plays an important role in dynamics of social contagions, which so far has eluded theoretical analysis. In this paper, we first propose a non-Markovian model to understand the effects of contact capacity on social contagions, in which each individual can only contact and transmit the information to a finite number of neighbors. We then develop a heterogeneous edge-based compartmental theory for this model, and a remarkable agreement with simulations is obtained. Through theory and simulations, we find that enlarging the contact capacity makes the network more fragile to behavior spreading. Interestingly, we find that both the continuous and discontinuous dependence of the final adoption size on the information transmission probability can arise. And there is a crossover phenomenon between the two types of dependence. More specifically, the crossover phenomenon can be induced by enlarging the contact capacity only when the degree exponent is above a critical degree exponent, while the the final behavior adoption size always grows continuously for any contact capacity when degree exponent is below the critical degree exponent.
The threshold model is a simple but classic model of contagion spreading in complex social systems. To capture the complex nature of social influencing we investigate numerically and analytically the transition in the behavior of threshold-limited cascades in the presence of multiple initiators as the distribution of thresholds is varied between the two extreme cases of identical thresholds and a uniform distribution. We accomplish this by employing a truncated normal distribution of the nodes thresholds and observe a non-monotonic change in the cascade size as we vary the standard deviation. Further, for a sufficiently large spread in the threshold distribution, the tipping-point behavior of the social influencing process disappears and is replaced by a smooth crossover governed by the size of initiator set. We demonstrate that for a given size of the initiator set, there is a specific variance of the threshold distribution for which an opinion spreads optimally. Furthermore, in the case of synthetic graphs we show that the spread asymptotically becomes independent of the system size, and that global cascades can arise just by the addition of a single node to the initiator set.
A first-order percolation transition, called explosive percolation, was recently discovered in evolution networks with random edge selection under a certain restriction. However, the network percolation with more realistic evolution mechanisms such as preferential attachment has not yet been concerned. We propose a tunable network percolation model by introducing a hybrid mechanism of edge selection into the Bohman-Frieze-Wormald model, in which a parameter adjusts the relative weights between random and preferential selections. A large number of simulations indicate that there exist crossover phenomena of percolation transition by adjusting the parameter in the evolution processes. When the strategy of selecting a candidate edge is dominated by random selection, a single discontinuous percolation transition occurs. When a candidate edge is selected more preferentially based on nodes degree, the size of the largest component undergoes multiple discontinuous jumps, which exhibits a peculiar difference from the network percolation of random selection with a certain restriction. Besides, the percolation transition becomes continuous when the candidate edge is selected completely preferentially.
We investigate critical behaviors of a social contagion model on weighted networks. An edge-weight compartmental approach is applied to analyze the weighted social contagion on strongly heterogenous networks with skewed degree and weight distributions. We find that degree heterogeneity can not only alter the nature of contagion transition from discontinuous to continuous but also can enhance or hamper the size of adoption, depending on the unit transmission probability. We also show that, the heterogeneity of weight distribution always hinder social contagions, and does not alter the transition type.
Internet communication channels, e.g., Facebook, Twitter, and email, are multiplex networks that facilitate interaction and information-sharing among individuals. During brief time periods users often use a single communication channel, but then communication channel alteration (CCA) occurs. This means that we must refine our understanding of the dynamics of social contagions. We propose a non-Markovian behavior spreading model in multiplex networks that takes into account the CCA mechanism, and we develop a generalized edge-based compartmental method to describe the spreading dynamics. Through extensive numerical simulations and theoretical analyses we find that the time delays induced by CCA slow the behavior spreading but do not affect the final adoption size. We also find that the CCA suppresses behavior spreading. On two coupled random regular networks, the adoption size exhibits hybrid growth, i.e., it grows first continuously and then discontinuously with the information transmission probability. CCA in ER-SF multiplex networks in which two subnetworks are ErdH{o}s-R{e}nyi (ER) and scale-free (SF) introduces a crossover from continuous to hybrid growth in adoption size versus information transmission probability. Our results extend our understanding of the role of CCA in spreading dynamics, and may elicit further research.