Do you want to publish a course? Click here

Receive Spatial Modulation for Massive MIMO Systems

135   0   0.0 ( 0 )
 Added by Ahmed Raafat
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

In this paper, we consider the downlink of a massive multiple-input-multiple-output (MIMO) single user transmission system operating in the millimeter wave outdoor narrowband channel environment. We propose a novel receive spatial modulation architecture aimed to reduce the power consumption at the user terminal, while attaining a significant throughput. The energy consumption reduction is obtained through the use of analog devices (amplitude detector), which reduces the number of radio frequency chains and analog-to-digital-converters (ADCs). The base station transmits spatial and modulation symbols per channel use. We show that the optimal spatial symbol detector is a threshold detector that can be implemented by using one bit ADC. We derive closed form expressions for the detection threshold at different signal-to-noise-ratio (SNR) regions showing that a simple threshold can be obtained at high SNR and its performance approaches the exact threshold. We derive expressions for the average bit error probability in the presence and absence of the threshold estimation error showing that a small number of pilot symbols is needed. A performance comparison is done between the proposed system and fully digital MIMO showing that a suitable constellation selection can reduce the performance gap.



rate research

Read More

Massive MIMO, a candidate for 5G technology, promises significant gains in wireless data rates and link reliability by using large numbers of antennas (more than 64) at the base transceiver station (BTS). Extra antennas help by focusing the transmission and reception of signal energy into ever-smaller regions of space. This brings huge improvements in throughput. However, it requires a large number of Radio Frequency (RF) chains (usually equal to number of transmit antennas), which is a major drawback. One approach to overcome these issues is to use Spatial Modulation (SM). In SM, an index of transmit antenna is used as an additional source of information to improve the overall spectral efficiency. In particular, a group of any number of information bits is mapped into two constellations: a signal constellation based on modulation scheme and a spatial constellation to encode the index of the transmit antenna. However, a low spectral efficiency is main drawback of SM. Therefore, a combination of SM with Spatial Multiplexing is an effective way to increase spectral efficiency with limited number of RF chains.
99 - Lin Liu , Guiyang Xia , Jun Zou 2020
In this paper, we make an investigation of receive antenna selection (RAS) strategies in the secure pre-coding aided spatial modulation (PSM) system with the aid of artificial noise. Due to a lack of the closed-form expression for secrecy rate (SR) in secure PSM systems, it is hard to optimize the RAS. To address this issue, the cut-off rate is used as an approximation of the SR. Further, two low-complexity RAS schemes for maximizing SR, called Max-SR-L and Max-SR-H, are derived in the low and high signal-to-noise ratio (SNR) regions, respectively. Due to the fact that the former works well in the low SNR region but becomes worse in the medium and high SNR regions while the latter also has the similar problem, a novel RAS strategy Max-SR-A is proposed to cover all SNR regions. Simulation results show that the proposed Max-SR-H and Max-SR-L schemes approach the optimal SR performances of the exhaustive search (ES) in the high and low SNR regions, respectively. In particular, the SR performance of the proposed Max-SR-A is close to that of the optimal ES and better than that of the random method in almost all SNR regions.
In this paper, we investigate the quantization and the feedback of downlink spatial covariance matrix for massive multiple-input multiple-output (MIMO) systems with cascaded precoding. Massive MIMO has gained a lot of attention recently because of its ability to significantly improve the network performance. To reduce the overhead of downlink channel estimation and uplink feedback in frequency-division duplex massive MIMO systems, cascaded precoding has been proposed, where the outer precoder is implemented using traditional limited feedback while the inner precoder is determined by the spatial covariance matrix of the channels. In massive MIMO systems, it is difficult to quantize the spatial covariance matrix because of its large size caused by the huge number of antennas. In this paper, we propose a spatial spectrum based approach for the quantization and the feedback of the spatial covariance matrix. The proposed inner precoder can be viewed as modulated discrete prolate spheroidal sequences and thus achieve much smaller spatial leakage than the traditional discrete Fourier transform submatrix based precoding. Practical issues for the application of the proposed approach are also addressed in this paper.
A large-scale fully-digital receive antenna array can provide very high-resolution direction of arrival (DOA) estimation, but resulting in a significantly high RF-chain circuit cost. Thus, a hybrid analog and digital (HAD) structure is preferred. Two phase alignment (PA) methods, HAD PA (HADPA) and hybrid digital and analog PA (HDAPA), are proposed to estimate DOA based on the parametric method. Compared to analog phase alignment (APA), they can significantly reduce the complexity in the PA phases. Subsequently, a fast root multiple signal classification HDAPA (Root-MUSIC-HDAPA) method is proposed specially for this hybrid structure to implement an approximately analytical solution. Due to the HAD structure, there exists the effect of direction-finding ambiguity. A smart strategy of maximizing the average receive power is adopted to delete those spurious solutions and preserve the true optimal solution by linear searching over a set of limited finite candidate directions. This results in a significant reduction in computational complexity. Eventually, the Cramer-Rao lower bound (CRLB) of finding emitter direction using the HAD structure is derived. Simulation results show that our proposed methods, Root-MUSIC-HDAPA and HDAPA, can achieve the hybrid CRLB with their complexities being significantly lower than those of pure linear searching-based methods, such as APA.
An uplink system with a single antenna transmitter and a single receiver with a large number of antennas is considered. We propose an energy-detection-based single-shot noncoherent communication scheme which does not use the instantaneous channel state information (CSI), but rather only the knowledge of the channel statistics. The suggested system uses a transmitter that modulates information on the power of the symbols, and a receiver which measures only the average energy across the antennas. We propose constellation designs which are asymptotically optimal with respect to symbol error rate (SER) with an increasing number of antennas, for any finite signal to noise ratio (SNR) at the receiver, under different assumptions on the availability of CSI statistics (exact channel fading distribution or the first few moments of the channel fading distribution). We also consider the case of imperfect knowledge of the channel statistics and describe in detail the case when there is a bounded uncertainty on the moments of the fading distribution. We present numerical results on the SER performance achieved by these designs in typical scenarios and find that they may outperform existing noncoherent constellations, e.g., conventional Amplitude Shift Keying (ASK), and pilot-based schemes, e.g., Pulse Amplitude Modulation (PAM). We also observe that an optimized constellation for a specific channel distribution makes it very sensitive to uncertainties in the channel statistics. In particular, constellation designs based on optimistic channel conditions could lead to significant performance degradation in terms of the achieved symbol error rates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا