No Arabic abstract
The Reconfigurable Intelligent Surface (RIS) constitutes one of the prominent technologies for the next 6-th Generation (6G) of wireless communications. It is envisioned to enhance signal coverage in cases where obstacles block the direct communication from Base Stations (BSs), and when high carrier frequencies are used that are sensitive to attenuation losses. In the literature, the exploitation of RISs is exclusively based on traditional coherent demodulation, which necessitates the availability of Channel State Information (CSI). Given the CSI, a multi-antenna BS or a dedicated controller computes the pre/post spatial coders and the RIS configuration. The latter tasks require significant amount of time and resources, which may not be affordable when the channel is time-varying or the CSI is not accurate enough. In this paper, we consider the uplink between a single-antenna user and a multi-antenna BS and present a novel RIS-empowered Orthogonal Frequency Division Multiplexing (OFDM) communication system based on the differential phase shift keying, which is suitable for high noise and/or mobility scenarios. Considering both an idealistic and a realistic channel model, analytical expressions for the Signal-to-Interference and Noise Ratio (SINR) and the Symbol Error Probability (SEP) of the proposed non-coherent RIS-empowered system are presented. Our extensive computer simulation results verify the accuracy of the presented analysis and showcase the proposed systems performance and superiority over coherent demodulation in different mobility and spatial correlation scenarios.
Reconfigurable intelligent surfaces (RISs) have been recently considered as a promising candidate for energy-efficient solutions in future wireless networks. Their dynamic and low-power configuration enables coverage extension, massive connectivity, and low-latency communications. Due to a large number of unknown variables referring to the RIS unit elements and the transmitted signals, channel estimation and signal recovery in RIS-based systems are the ones of the most critical technical challenges. To address this problem, we focus on the RIS-assisted wireless communication system and present two joint channel estimation and signal recovery schemes based on message passing algorithms in this paper. Specifically, the proposed bidirectional scheme applies the Taylor series expansion and Gaussian approximation to simplify the sum-product procedure in the formulated problem. In addition, the inner iteration that adopts two variants of approximate message passing algorithms is incorporated to ensure robustness and convergence. Two ambiguities removal methods are also discussed in this paper. Our simulation results show that the proposed schemes show the superiority over the state-of-art benchmark method. We also provide insights on the impact of different RIS parameter settings on the proposed schemes.
Multi-antenna non-orthogonal multiple access (NOMA) is a promising technique to significantly improve the spectral efficiency and support massive access, which has received considerable interests from academic and industry. This article first briefly introduces the basic idea of conventional multi-antenna NOMA technique, and then discusses the key limitations, namely, the high complexity of successive interference cancellation(SIC) and the lack of fairness between the user with a strong channel gain and the user with a weak channel gain. To address these problems, this article proposes a novel spatial modulation (SM) assisted multi-antenna NOMA technique, which avoids the use of SIC and is able to completely cancel intra-cluster interference. Furthermore, simulation results are provided to validate the effectiveness of the proposed novel technique compared to the conventional multi-antenna NOMA. Finally, this article points out the key challenges and sheds light on the future research directions of the SM assisted multi-antenna NOMA technique.
We investigate transmission optimization for intelligent reflecting surface (IRS) assisted multi-antenna systems from the physical-layer security perspective. The design goal is to maximize the system secrecy rate subject to the source transmit power constraint and the unit modulus constraints imposed on phase shifts at the IRS. To solve this complicated non-convex problem, we develop an efficient alternating algorithm where the solutions to the transmit covariance of the source and the phase shift matrix of the IRS are achieved in closed form and semi-closed forms, respectively. The convergence of the proposed algorithm is guaranteed theoretically. Simulations results validate the performance advantage of the proposed optimized design.
Reconfigurable Intelligent Surfaces (RISs) have been recently considered as an energy-efficient solution for future wireless networks. Their dynamic and low-power configuration enables coverage extension, massive connectivity, and low-latency communications. Channel estimation and signal recovery in RISbased systems are among the most critical technical challenges, due to the large number of unknown variables referring to the RIS unit elements and the transmitted signals. In this paper, we focus on the downlink of a RIS-assisted multi-user Multiple Input Single Output (MISO) communication system and present a joint channel estimation and signal recovery scheme based on the PARAllel FACtor (PARAFAC) decomposition. This decomposition unfolds the cascaded channel model and facilitates signal recovery using the Bilinear Generalized Approximate Message Passing (BiG-AMP) algorithm. The proposed method includes an alternating least squares algorithm to iteratively estimate the equivalent matrix, which consists of the transmitted signals and the channels between the base station and RIS, as well as the channels between the RIS and the multiple users. Our selective simulation results show that the proposed scheme outperforms a benchmark scheme that uses genie-aided information knowledge. We also provide insights on the impact of different RIS parameter settings on the proposed scheme.
With the increasing number of wireless communication systems and the demand for bandwidth, the wireless medium has become a congested and contested environment. Operating under such an environment brings several challenges, especially for military communication systems, which need to guarantee reliable communication while avoiding interfering with other friendly or neutral systems and denying the enemy systems of service. In this work, we investigate a novel application of Rate-Splitting Multiple Access(RSMA) for joint communications and jamming with a Multi-Carrier(MC) waveform in a multiantenna Cognitive Radio(CR) system. RSMA is a robust multiple access scheme for downlink multi-antenna wireless networks. RSMA relies on multi-antenna Rate-Splitting (RS) at the transmitter and Successive Interference Cancellation (SIC) at the receivers. Our aim is to simultaneously communicate with Secondary Users(SUs) and jam Adversarial Users(AUs) to disrupt their communications while limiting the interference to Primary Users(PUs) in a setting where all users perform broadband communications by MC waveforms in their respective networks. We consider the practical setting of imperfect CSI at transmitter(CSIT) for the SUs and PUs, and statistical CSIT for AUs. We formulate a problem to obtain optimal precoders which maximize the mutual information under interference and jamming power constraints. We propose an Alternating Optimization-Alternating Direction Method of Multipliers(AOADMM) based algorithm for solving the resulting non-convex problem. We perform an analysis based on Karush-Kuhn-Tucker conditions to determine the optimal jamming and interference power thresholds that guarantee the feasibility of problem and propose a practical algorithm to calculate the interference power threshold. By simulations, we show that RSMA achieves a higher sum-rate than Space Division Multiple Access(SDMA).