Do you want to publish a course? Click here

The fate of Hamiltons Hodograph in Special and General Relativity

68   0   0.0 ( 0 )
 Added by Gary Gibbons
 Publication date 2015
  fields Physics
and research's language is English
 Authors G.W. Gibbons




Ask ChatGPT about the research

The hodograph of a non-relativistic particle motion in Euclidean space is the curve described by its momentum vector. For a general central orbit problem the hodograph is the inverse of the pedal curve of the orbit, (i.e. its polar reciprocal), rotated through a right angle. Hamilton showed that for the Kepler/Coulomb problem, the hodograph is a circle whose centre is in the direction of a conserved eccentricity vector. The addition of an inverse cube law force induces the eccentricity vector to precess and with it the hodograph. The same effect is produced by a cosmic string. If one takes the relativistic momentum to define the hodograph, then for the Sommerfeld (i.e. the special relativistic Kepler/Coulomb problem) there is an effective inverse cube force which causes the hodograph to precess. If one uses Schwarzschild coordinates one may also define a a hodograph for timelike or null geodesics moving around a black hole. Iheir pedal equations are given. In special cases the hodograph may be found explicitly. For example the orbit of a photon which starts from the past singularity, grazes the horizon and returns to future singularity is a cardioid, its pedal equation is Cayleys sextic the inverse of which is Tschirhausens cubic. It is also shown that that provided one uses Beltrami coordinates, the hodograph for the non-relativistic Kepler problem on hyperbolic space is also a circle. An analogous result holds for the the round 3-sphere. In an appendix the hodograph of a particle freely moving on a group manifold equipped with a left-invariant metric is defined.



rate research

Read More

We study the covariant phase space of vacuum general relativity at the null boundary of causal diamonds. The past and future components of such a null boundary each have an infinite-dimensional symmetry algebra consisting of diffeomorphisms of the $2$-sphere and boost supertranslations corresponding to angle-dependent rescalings of affine parameter along the null generators. Associated to these symmetries are charges and fluxes obtained from the covariant phase space formalism using the prescription of Wald and Zoupas. By analyzing the behavior of the spacetime metric near the corners of the causal diamond, we show that the fluxes are also Hamiltonian generators of the symmetries on the phase space. In particular, the supertranslation fluxes yield an infinite family of boost Hamiltonians acting on the gravitational data of causal diamonds. We show that the smoothness of the vector fields representing such symmetries at the bifurcation edge of the causal diamond implies suitable matching conditions between the symmetries on the past and future components of the null boundary. Similarly, the smoothness of the spacetime metric implies that the fluxes of all such symmetries is conserved between the past and future components of the null boundary. This establishes an infinite set of conservation laws for finite subregions in gravity analogous to those at null infinity. We also show that the symmetry algebra at the causal diamond has a non-trivial center corresponding to constant boosts. The central charges associated to these constant boosts are proportional to the area of the bifurcation edge, for any causal diamond, in analogy with the Wald entropy formula.
231 - Masaru Siino 2015
A homogeneous two-dimensional metric including the degrees of freedom of Teichmuller deformation is developed. The Teichmuller deformation is incorporated by affine stretching of complex structure. According to Yamadas investigation by pinching parameter, concrete formulation for a higher genus Riemann surface can be realized. We will have a homogeneous standard metric including the dynamical degrees of freedom as Teichmuller deformation in a leading order of the pinching parameter, which would be treated as homogeneous anisotropic metric for a double torus universe, which satisfy momentum constraints.
124 - R. Casadio , F. Scardigli 2020
The Generalized Uncertainty Principle (GUP) has been directly applied to the motion of (macroscopic) test bodies on a given space-time in order to compute corrections to the classical orbits predicted in Newtonian Mechanics or General Relativity. These corrections generically violate the Equivalence Principle. The GUP has also been indirectly applied to the gravitational source by relating the GUP modified Hawking temperature to a deformation of the background metric. Such a deformed background metric determines new geodesic motions without violating the Equivalence Principle. We point out here that the two effects are mutually exclusive when compared with experimental bounds. Moreover, the former stems from modified Poisson brackets obtained from a wrong classical limit of the deformed canonical commutators.
We study the spontaneously induced general relativity (GR) from the scalar-tensor gravity. We demonstrate by numerical methods that a novel inner core can be connected to the Schwarzschild exterior with cosmological constants and any sectional curvature. Deriving an analytic core metric for a general exterior, we show that all the nontrivial features of the core, including the locally holographic entropy packing, are universal for the general exterior in static spacetimes. We also investigate whether the f(R) gravity can accommodate the nontrivial core.
This paper studies the nature of fractional linear transformations in a general relativity context as well as in a quantum theoretical framework. Two features are found to deserve special attention: the first is the possibility of separating the limit-point condition at infinity into loxodromic, hyperbolic, parabolic and elliptic cases. This is useful in a context in which one wants to look for a correspondence between essentially self-adjoint spherically symmetric Hamiltonians of quantum physics and the theory of Bondi-Metzner-Sachs transformations in general relativity. The analogy therefore arising, suggests that further investigations might be performed for a theory in which the role of fractional linear maps is viewed as a bridge between the quantum theory and general relativity. The second aspect to point out is the possibility of interpreting the limit-point condition at both ends of the positive real line, for a second-order singular differential operator, which occurs frequently in applied quantum mechanics, as the limiting procedure arising from a very particular Kleinian group which is the hyperbolic cyclic group. In this framework, this work finds that a consistent system of equations can be derived and studied. Hence one is led to consider the entire transcendental functions, from which it is possible to construct a fundamental system of solutions of a second-order differential equation with singular behavior at both ends of the positive real line, which in turn satisfy the limit-point conditions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا