Do you want to publish a course? Click here

Spontaneously induced general relativity with holographic interior and general exterior

163   0   0.0 ( 0 )
 Added by Shao-Feng Wu
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the spontaneously induced general relativity (GR) from the scalar-tensor gravity. We demonstrate by numerical methods that a novel inner core can be connected to the Schwarzschild exterior with cosmological constants and any sectional curvature. Deriving an analytic core metric for a general exterior, we show that all the nontrivial features of the core, including the locally holographic entropy packing, are universal for the general exterior in static spacetimes. We also investigate whether the f(R) gravity can accommodate the nontrivial core.



rate research

Read More

Varying the gravitational Lagrangian produces a boundary contribution that has various physical applications. It determines the right boundary terms to be added to the action once boundary conditions are specified, and defines the symplectic structure of covariant phase space methods. We study general boundary variations using tetrads instead of the metric. This choice streamlines many calculations, especially in the case of null hypersurfaces with arbitrary coordinates, where we show that the spin-1 momentum coincides with the rotational 1-form of isolated horizons. The additional gauge symmetry of internal Lorentz transformations leaves however an imprint: the boundary variation differs from the metric one by an exact 3-form. On the one hand, this difference helps in the variational principle: gluing hypersurfaces to determine the action boundary terms for given boundary conditions is simpler, including the most general case of non-orthogonal corners. On the other hand, it affects the construction of Hamiltonian surface charges with covariant phase space methods, which end up being generically different from the metric ones, in both first and second-order formalisms. This situation is treated in the literature gauge-fixing the tetrad to be adapted to the hypersurface or introducing a fine-tuned internal Lorentz transformation depending non-linearly on the fields. We point out and explore the alternative approach of dressing the bare symplectic potential to recover the value of all metric charges, and not just for isometries. Surface charges can also be constructed using a cohomological prescription: in this case we find that the exact 3-form mismatch plays no role, and tetrad and metric charges are equal. This prescription leads however to different charges whether one uses a first-order or second-order Lagrangian, and only for isometries one recovers the same charges.
The junction conditions for General Relativity in the presence of domain walls with intrinsic spin are derived in three and higher dimensions. A stress tensor and a spin current can be defined just by requiring the existence of a well defined volume element instead of an induced metric, so as to allow for generic torsion sources. In general, when the torsion is localized on the domain wall, it is necessary to relax the continuity of the tangential components of the vielbein. In fact it is found that the spin current is proportional to the jump in the vielbein and the stress-energy tensor is proportional to the jump in the spin connection. The consistency of the junction conditions implies a constraint between the direction of flow of energy and the orientation of the spin. As an application, we derive the circularly symmetric solutions for both the rotating string with tension and the spinning dust string in three dimensions. The rotating string with tension generates a rotating truncated cone outside and a flat space-time with inevitable frame dragging inside. In the case of a string made of spinning dust, in opposition to the previous case no frame dragging is present inside, so that in this sense, the dragging effect can be shielded by considering spinning instead of rotating sources. Both solutions are consistently lifted as cylinders in the four-dimensional case.
We investigate a particular type of classical nonsingular bouncing cosmology, which results from general relativity if we allow for degenerate metrics. The simplest model has a matter content with a constant equation-of-state parameter and we get the modified Hubble diagrams for both the luminosity distance and the angular diameter distance. Based on these results, we present a Gedankenexperiment to determine the length scale of the spacetime defect which has replaced the big bang singularity. A possibly more realistic model has an equation-of-state parameter which is different before and after the bounce. This last model also provides an upper bound on the defect length scale.
124 - R. Casadio , F. Scardigli 2020
The Generalized Uncertainty Principle (GUP) has been directly applied to the motion of (macroscopic) test bodies on a given space-time in order to compute corrections to the classical orbits predicted in Newtonian Mechanics or General Relativity. These corrections generically violate the Equivalence Principle. The GUP has also been indirectly applied to the gravitational source by relating the GUP modified Hawking temperature to a deformation of the background metric. Such a deformed background metric determines new geodesic motions without violating the Equivalence Principle. We point out here that the two effects are mutually exclusive when compared with experimental bounds. Moreover, the former stems from modified Poisson brackets obtained from a wrong classical limit of the deformed canonical commutators.
This paper studies the nature of fractional linear transformations in a general relativity context as well as in a quantum theoretical framework. Two features are found to deserve special attention: the first is the possibility of separating the limit-point condition at infinity into loxodromic, hyperbolic, parabolic and elliptic cases. This is useful in a context in which one wants to look for a correspondence between essentially self-adjoint spherically symmetric Hamiltonians of quantum physics and the theory of Bondi-Metzner-Sachs transformations in general relativity. The analogy therefore arising, suggests that further investigations might be performed for a theory in which the role of fractional linear maps is viewed as a bridge between the quantum theory and general relativity. The second aspect to point out is the possibility of interpreting the limit-point condition at both ends of the positive real line, for a second-order singular differential operator, which occurs frequently in applied quantum mechanics, as the limiting procedure arising from a very particular Kleinian group which is the hyperbolic cyclic group. In this framework, this work finds that a consistent system of equations can be derived and studied. Hence one is led to consider the entire transcendental functions, from which it is possible to construct a fundamental system of solutions of a second-order differential equation with singular behavior at both ends of the positive real line, which in turn satisfy the limit-point conditions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا