Do you want to publish a course? Click here

Disc fragmentation rarely forms planetary-mass objects

64   0   0.0 ( 0 )
 Added by W. K. M. Rice
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is now reasonably clear that disc fragmentation can only operate in the outer parts of protostellar discs ($r > 50$ au). It is also expected that any object that forms via disc fragmentation will have an initial mass greater than that of Jupiter. However, whether or not such a process actually operates, or can play a significant role in the formation of planetary-mass objects, is still unclear. We do have a few examples of directly imaged objects that may have formed in this way, but we have yet to constrain how often disc fragmentation may actually form such objects. What we want to consider here is whether or not we can constrain the likely population of planetary-mass objects formed via disc fragmentation by considering how a population of objects at large radii ($a > 50$) au - if they do exist - would evolve under perturbations from more distant stellar companions. We find that there is a specific region of parameter space to which such objects would be scattered and show that the known exoplanets in that region have properties more consistent with that of the bulk exoplanet population, than with having been formed via disc fragmentation at large radii. Along with the scarcity of directly-imaged objects at large radii, our results provide a similar, but independent, constraint on the frequency of objects formed via disc fragmentation.



rate research

Read More

All-sky imaging surveys have identified several dozen isolated planetary-mass objects (IPMOs), far away from any star. Here, we examine the prospects for detecting transiting moons around these objects. We expect transiting moons to be common, occurring around 10-15% of IPMOs, given that close-orbiting moons have a high geometric transit probability and are expected to be a common outcome of giant planet formation. IPMOs offer an advantage over other directly imaged planets in that high-contrast imaging is not necessary to detect the photometric transit signal. For at least 30 (>50%) of the currently known IPMOs, observations of a single transit with the James Webb Space Telescope would have low enough forecasted noise levels to allow for the detection of an Io-like or Titan-like moon. Intrinsic variability of the IPMOs will be an obstacle. Using archival time-series photometry of IPMOs with the Spitzer Space Telescope as a proof-of-concept, we found evidence for a fading event of 2MASS J1119-1137 AB that might have been caused by intrinsic variability, but is also consistent with a single transit of a habitable-zone 1.7$R_oplus$ exomoon. Although the interpretation of this particular event is inconclusive, the characteristics of the data and the candidate signal suggest that Earth-sized habitable-zone exomoons around IPMOs are detectable with existing instrumentation.
WD 0145+234 is a white dwarf that is accreting metals from a circumstellar disc of planetary material. It has exhibited a substantial and sustained increase in 3-5 micron flux since 2018. Follow-up Spitzer photometry reveals that emission from the disc had begun to decrease by late 2019. Stochastic brightening events superimposed on the decline in brightness suggest the liberation of dust during collisional evolution of the circumstellar solids. A simple model is used to show that the observations are indeed consistent with ongoing collisions. Rare emission lines from circumstellar gas have been detected at this system, supporting the emerging picture of white dwarf debris discs as sites of collisional gas and dust production.
I discuss the role that disc fragmentation plays in the formation of gas giant and terrestrial planets, and how this relates to the formation of brown dwarfs and low-mass stars, and ultimately to the process of star formation. Protostellar discs may fragment, if they are massive enough and can cool fast enough, but most of the objects that form by fragmentation are brown dwarfs. It may be possible that planets also form, if the mass growth of a proto-fragment is stopped (e.g. if this fragment is ejected from the disc), or suppressed and even reversed (e.g by tidal stripping). I will discuss if it is possible to distinguish whether a planet has formed by disc fragmentation or core accretion, and mention of a few examples of observed exoplanets that are suggestive of formation by disc fragmentation .
Previous work concerning planet formation around low-mass stars has often been limited to large planets and individual systems. As current surveys routinely detect planets down to terrestrial size in these systems, a more holistic approach that reflects their diverse architectures is timely. Here, we investigate planet formation around low-mass stars and identify differences in the statistical distribution of planets. We compare the synthetic planet populations to observed exoplanets. We used the Generation III Bern model of planet formation and evolution to calculate synthetic populations varying the central star from solar-like stars to ultra-late M dwarfs. This model includes planetary migration, N-body interactions between embryos, accretion of planetesimals and gas, and long-term contraction and loss of the gaseous atmospheres. We find that temperate, Earth-sized planets are most frequent around early M dwarfs and more rare for solar-type stars and late M dwarfs. The planetary mass distribution does not linearly scale with the disk mass. The reason is the emergence of giant planets for M*>0.5 Msol, which leads to the ejection of smaller planets. For M*>0.3 Msol there is sufficient mass in the majority of systems to form Earth-like planets, leading to a similar amount of Exo-Earths going from M to G dwarfs. In contrast, the number of super-Earths and larger planets increases monotonically with stellar mass. We further identify a regime of disk parameters that reproduces observed M-dwarf systems such as TRAPPIST-1. However, giant planets around late M dwarfs such as GJ 3512b only form when type I migration is substantially reduced. We quantify the stellar mass dependence of multi-planet systems using global simulations of planet formation and evolution. The results compare well to current observational data and predicts trends that can be tested with future observations.
We recently used near-infrared spectroscopy to improve the characterization of 76 low-mass stars around which K2 had detected 79 candidate transiting planets. Thirty of these worlds were new discoveries that have not previously been published. We calculate the false positive probabilities that the transit-like signals are actually caused by non-planetary astrophysical phenomena and reject five new transit-like events and three previously reported events as false positives. We also statistically validate 18 planets (eight of which were previously unpublished), confirm the earlier validation of 21 planets, and announce 17 newly discovered planet candidates. Revising the properties of the associated planet candidates based on the updated host star characteristics and refitting the transit photometry, we find that our sample contains 20 planets or planet candidates with radii smaller than 1.25 Earth radii, 20 super-Earths (1.25-2 Earth radii), 20 small Neptunes (2-4 Earth radii), three large Neptunes (4-6 Earth radii), and eight giant planets (> 6 Earth radii). Most of these planets are highly irradiated, but EPIC 206209135.04 (K2-72e, Rp = 1.29 (-0.13/+0.14) Earth radii), EPIC 211988320.01 (Rp = 2.86 (-0.15/+0.16) Earth radii), and EPIC 212690867.01 (Rp = 2.20 (-0.18/+0.19) Earth radii) orbit within optimistic habitable zone boundaries set by the recent Venus inner limit and the early Mars outer limit. In total, our planet sample includes eight moderately-irradiated 1.5-3 Earth radius planet candidates (Fp < 20 F_Earth) orbiting brighter stars (Ks < 11) that are well-suited for atmospheric investigations with Hubble, Spitzer, and/or the James Webb Space Telescope. Five validated planets orbit relatively bright stars (Kp < 12.5) and are expected to yield radial velocity semi-amplitudes of at least 2 m/s.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا