Do you want to publish a course? Click here

The formation of planets by disc fragmentation

200   0   0.0 ( 0 )
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

I discuss the role that disc fragmentation plays in the formation of gas giant and terrestrial planets, and how this relates to the formation of brown dwarfs and low-mass stars, and ultimately to the process of star formation. Protostellar discs may fragment, if they are massive enough and can cool fast enough, but most of the objects that form by fragmentation are brown dwarfs. It may be possible that planets also form, if the mass growth of a proto-fragment is stopped (e.g. if this fragment is ejected from the disc), or suppressed and even reversed (e.g by tidal stripping). I will discuss if it is possible to distinguish whether a planet has formed by disc fragmentation or core accretion, and mention of a few examples of observed exoplanets that are suggestive of formation by disc fragmentation .



rate research

Read More

We investigate the formation and fragmentation of discs using a suite of three-dimensional smoothed particle radiative magnetohydrodynamics simulations. Our models are initialised as 1M$_odot$ rotating Bonnor-Ebert spheres that are threaded with a uniform magnetic field. We examine the effect of including ideal and non-ideal magnetic fields, the orientation and strength of the magnetic field, and the initial rotational rate. We follow the gravitational collapse and early evolution of each system until the final classification of the protostellar disc can be determined. Of our 105 models, 41 fragment, 21 form a spiral structure but do not fragment, and another 12 form smooth discs. Fragmentation is more likely to occur for faster initial rotation rates and weaker magnetic fields. For stronger magnetic field strengths, the inclusion of non-ideal MHD promotes disc formation, and several of these models fragment, whereas their ideal MHD counterparts do not. For the models that fragment, there is no correlation between our parameters and where or when the fragmentation occurs. Bipolar outflows are launched in only 17 models, and these models have strong magnetic fields that are initially parallel to the rotation axis. Counter-rotating envelopes form in four slowly-rotating, strong-field models -- including one ideal MHD model -- indicating they form only in a small fraction of the parameter space investigated.
Understanding the formation of wide binary systems of very low mass stars (M $le$ 0.1 Msun) is challenging. The most obvious route is via widely separated low-mass collapsing fragments produced through turbulent fragmentation of a molecular core. However, close binaries/multiples from disk fragmentation can also evolve to wide binaries over a few initial crossing times of the stellar cluster through tidal evolution. Finding an isolated low mass wide binary system in the earliest stage of formation, before tidal evolution could occur, would prove that turbulent fragmentation is a viable mechanism for (very) low mass wide binaries. Here we report high resolution ALMA observations of a known wide-separation protostellar binary, showing that each component has a circumstellar disk. The system is too young to have evolved from a close binary and the disk axes are misaligned, providing strong support for the turbulent fragmentation model. Masses of both stars are derived from the Keplerian rotation of the disks; both are very low mass stars.
77 - Hongping Deng 2021
Intermediate mass planets, from Super-Earth to Neptune-sized bodies, are the most common type of planets in the galaxy. The prevailing theory of planet formation, core-accretion, predicts significantly fewer intermediate-mass giant planets than observed. The competing mechanism for planet formation, disk instability, can produce massive gas giant planets on wide-orbits, such as HR8799, by direct fragmentation of the protoplanetary disk. Previously, fragmentation in magnetized protoplanetary disks has only been considered when the magneto-rotational instability is the driving mechanism for magnetic field growth. Yet, this instability is naturally superseded by the spiral-driven dynamo when more realistic, non-ideal MHD conditions are considered. Here we report on MHD simulations of disk fragmentation in the presence of a spiral-driven dynamo. Fragmentation leads to the formation of long-lived bound protoplanets with masses that are at least one order of magnitude smaller than in conventional disk instability models. These light clumps survive shear and do not grow further due to the shielding effect of the magnetic field, whereby magnetic pressure stifles local inflow of matter. The outcome is a population of gaseous-rich planets with intermediate masses, while gas giants are found to be rarer, in qualitative agreement with the observed mass distribution of exoplanets.
We have carried out two-dimensional hydrodynamical simulations to study the effects of disk self-gravity and radiative cooling on the formation of gaps and spirals. (1) With disk self-gravity included, we find stronger, more tightly-wound spirals and deeper gaps in more massive disks. The deeper gaps are due to the larger Angular Momentum Flux (AMF) of the waves excited in more massive disks, as expected from the linear theory. The position of the secondary gap does not change, provided that the disk is not extremely massive ($Q gtrsim 2$). (2) With radiative cooling included, the excited spirals become monotonically more open (less tightly-wound) as the disks cooling timescale increases. On the other hand, the amplitude and strength of the spirals decrease when the cooling time increases from a small value to $sim 1/Omega$, but then the amplitude starts to increase again when the cooling time continues to increase. This indicates that radiative dissipation becomes important for waves with $T_{cool}sim$ 1. Consequently, the induced primary gap is narrower and the secondary gap becomes significantly shallower when the cooling time becomes $sim 1/Omega$. When the secondary gap is present, the position of it moves to the inner disk from the fast cooling cases to the slow cooling cases. The dependence of gap properties on the cooling timescale (e.g. in AS 209) provides a new way to constrain the disk optical depth and thus disk surface density.
It is now reasonably clear that disc fragmentation can only operate in the outer parts of protostellar discs ($r > 50$ au). It is also expected that any object that forms via disc fragmentation will have an initial mass greater than that of Jupiter. However, whether or not such a process actually operates, or can play a significant role in the formation of planetary-mass objects, is still unclear. We do have a few examples of directly imaged objects that may have formed in this way, but we have yet to constrain how often disc fragmentation may actually form such objects. What we want to consider here is whether or not we can constrain the likely population of planetary-mass objects formed via disc fragmentation by considering how a population of objects at large radii ($a > 50$) au - if they do exist - would evolve under perturbations from more distant stellar companions. We find that there is a specific region of parameter space to which such objects would be scattered and show that the known exoplanets in that region have properties more consistent with that of the bulk exoplanet population, than with having been formed via disc fragmentation at large radii. Along with the scarcity of directly-imaged objects at large radii, our results provide a similar, but independent, constraint on the frequency of objects formed via disc fragmentation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا