Do you want to publish a course? Click here

High-Contrast Color-Stripe Pattern for Rapid Structured-Light Range Imaging

77   0   0.0 ( 0 )
 Added by Changsoo Je
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

For structured-light range imaging, color stripes can be used for increasing the number of distinguishable light patterns compared to binary BW stripes. Therefore, an appropriate use of color patterns can reduce the number of light projections and range imaging is achievable in single video frame or in one shot. On the other hand, the reliability and range resolution attainable from color stripes is generally lower than those from multiply projected binary BW patterns since color contrast is affected by object color reflectance and ambient light. This paper presents new methods for selecting stripe colors and designing multiple-stripe patterns for one-shot and two-shot imaging. We show that maximizing color contrast between the stripes in one-shot imaging reduces the ambiguities resulting from colored object surfaces and limitations in sensor/projector resolution. Two-shot imaging adds an extra video frame and maximizes the color contrast between the first and second video frames to diminish the ambiguities even further. Experimental results demonstrate the effectiveness of the presented one-shot and two-shot color-stripe imaging schemes.



rate research

Read More

Active range sensing using structured-light is the most accurate and reliable method for obtaining 3D information. However, most of the work has been limited to range sensing of static objects, and range sensing of dynamic (moving or deforming) objects has been investigated recently only by a few researchers. Sinusoidal structured-light is one of the well-known optical methods for 3D measurement. In this paper, we present a novel method for rapid high-resolution range imaging using color sinusoidal pattern. We consider the real-world problem of nonlinearity and color-band crosstalk in the color light projector and color camera, and present methods for accurate recovery of color-phase. For high-resolution ranging, we use high-frequency patterns and describe new unwrapping algorithms for reliable range recovery. The experimental results demonstrate the effectiveness of our methods.
Multiple color stripes have been employed for structured light-based rapid range imaging to increase the number of uniquely identifiable stripes. The use of multiple color stripes poses two problems: (1) object surface color may disturb the stripe color and (2) the number of adjacent stripes required for identifying a stripe may not be maintained near surface discontinuities such as occluding boundaries. In this paper, we present methods to alleviate those problems. Log-gradient filters are employed to reduce the influence of object colors, and color stripes in two and three directions are used to increase the chance of identifying correct stripes near surface discontinuities. Experimental results demonstrate the effectiveness of our methods.
Research interest in rapid structured-light imaging has grown increasingly for the modeling of moving objects, and a number of methods have been suggested for the range capture in a single video frame. The imaging area of a 3D object using a single projector is restricted since the structured light is projected only onto a limited area of the object surface. Employing additional projectors to broaden the imaging area is a challenging problem since simultaneous projection of multiple patterns results in their superposition in the light-intersected areas and the recognition of original patterns is by no means trivial. This paper presents a novel method of multi-projector color structured-light vision based on projector-camera triangulation. By analyzing the behavior of superposed-light colors in a chromaticity domain, we show that the original light colors cannot be properly extracted by the conventional direct estimation. We disambiguate multiple projectors by multiplexing the orientations of projector patterns so that the superposed patterns can be separated by explicit derivative computations. Experimental studies are carried out to demonstrate the validity of the presented method. The proposed method increases the efficiency of range acquisition compared to conventional active stereo using multiple projectors.
In this paper, we present a novel method for rapid high-resolution range sensing using green-blue stripe pattern. We use green and blue for designing high-frequency stripe projection pattern. For accurate and reliable range recovery, we identify the stripe patterns by our color-stripe segmentation and unwrapping algorithms. The experimental result for a naked human face shows the effectiveness of our method.
Sky/cloud images obtained from ground-based sky-cameras are usually captured using a fish-eye lens with a wide field of view. However, the sky exhibits a large dynamic range in terms of luminance, more than a conventional camera can capture. It is thus difficult to capture the details of an entire scene with a regular camera in a single shot. In most cases, the circumsolar region is over-exposed, and the regions near the horizon are under-exposed. This renders cloud segmentation for such images difficult. In this paper, we propose HDRCloudSeg -- an effective method for cloud segmentation using High-Dynamic-Range (HDR) imaging based on multi-exposure fusion. We describe the HDR image generation process and release a new database to the community for benchmarking. Our proposed approach is the first using HDR radiance maps for cloud segmentation and achieves very good results.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا