Do you want to publish a course? Click here

High-Dynamic-Range Imaging for Cloud Segmentation

165   0   0.0 ( 0 )
 Added by Soumyabrata Dev
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Sky/cloud images obtained from ground-based sky-cameras are usually captured using a fish-eye lens with a wide field of view. However, the sky exhibits a large dynamic range in terms of luminance, more than a conventional camera can capture. It is thus difficult to capture the details of an entire scene with a regular camera in a single shot. In most cases, the circumsolar region is over-exposed, and the regions near the horizon are under-exposed. This renders cloud segmentation for such images difficult. In this paper, we propose HDRCloudSeg -- an effective method for cloud segmentation using High-Dynamic-Range (HDR) imaging based on multi-exposure fusion. We describe the HDR image generation process and release a new database to the community for benchmarking. Our proposed approach is the first using HDR radiance maps for cloud segmentation and achieves very good results.



rate research

Read More

106 - Qian Ye , Jun Xiao , Kin-man Lam 2021
This paper considers the problem of generating an HDR image of a scene from its LDR images. Recent studies employ deep learning and solve the problem in an end-to-end fashion, leading to significant performance improvements. However, it is still hard to generate a good quality image from LDR images of a dynamic scene captured by a hand-held camera, e.g., occlusion due to the large motion of foreground objects, causing ghosting artifacts. The key to success relies on how well we can fuse the input images in their feature space, where we wish to remove the factors leading to low-quality image generation while performing the fundamental computations for HDR image generation, e.g., selecting the best-exposed image/region. We propose a novel method that can better fuse the features based on two ideas. One is multi-step feature fusion; our network gradually fuses the features in a stack of blocks having the same structure. The other is the design of the component block that effectively performs two operations essential to the problem, i.e., comparing and selecting appropriate images/regions. Experimental results show that the proposed method outperforms the previous state-of-the-art methods on the standard benchmark tests.
In this paper, we present an attention-guided deformable convolutional network for hand-held multi-frame high dynamic range (HDR) imaging, namely ADNet. This problem comprises two intractable challenges of how to handle saturation and noise properly and how to tackle misalignments caused by object motion or camera jittering. To address the former, we adopt a spatial attention module to adaptively select the most appropriate regions of various exposure low dynamic range (LDR) images for fusion. For the latter one, we propose to align the gamma-corrected images in the feature-level with a Pyramid, Cascading and Deformable (PCD) alignment module. The proposed ADNet shows state-of-the-art performance compared with previous methods, achieving a PSNR-$l$ of 39.4471 and a PSNR-$mu$ of 37.6359 in NTIRE 2021 Multi-Frame HDR Challenge.
We propose an approach to instance segmentation from 3D point clouds based on dynamic convolution. This enables it to adapt, at inference, to varying feature and object scales. Doing so avoids some pitfalls of bottom up approaches, including a dependence on hyper-parameter tuning and heuristic post-processing pipelines to compensate for the inevitable variability in object sizes, even within a single scene. The representation capability of the network is greatly improved by gathering homogeneous points that have identical semantic categories and close votes for the geometric centroids. Instances are then decoded via several simple convolution layers, where the parameters are generated conditioned on the input. The proposed approach is proposal-free, and instead exploits a convolution process that adapts to the spatial and semantic characteristics of each instance. A light-weight transformer, built on the bottleneck layer, allows the model to capture long-range dependencies, with limited computational overhead. The result is a simple, efficient, and robust approach that yields strong performance on various datasets: ScanNetV2, S3DIS, and PartNet. The consistent improvements on both voxel- and point-based architectures imply the effectiveness of the proposed method. Code is available at: https://git.io/DyCo3D
133 - Tianhong Dai , Wei Li , Xilei Cao 2021
High dynamic range (HDR) imaging from multiple low dynamic range (LDR) images has been suffering from ghosting artifacts caused by scene and objects motion. Existing methods, such as optical flow based and end-to-end deep learning based solutions, are error-prone either in detail restoration or ghosting artifacts removal. Comprehensive empirical evidence shows that ghosting artifacts caused by large foreground motion are mainly low-frequency signals and the details are mainly high-frequency signals. In this work, we propose a novel frequency-guided end-to-end deep neural network (FHDRNet) to conduct HDR fusion in the frequency domain, and Discrete Wavelet Transform (DWT) is used to decompose inputs into different frequency bands. The low-frequency signals are used to avoid specific ghosting artifacts, while the high-frequency signals are used for preserving details. Using a U-Net as the backbone, we propose two novel modules: merging module and frequency-guided upsampling module. The merging module applies the attention mechanism to the low-frequency components to deal with the ghost caused by large foreground motion. The frequency-guided upsampling module reconstructs details from multiple frequency-specific components with rich details. In addition, a new RAW dataset is created for training and evaluating multi-frame HDR imaging algorithms in the RAW domain. Extensive experiments are conducted on public datasets and our RAW dataset, showing that the proposed FHDRNet achieves state-of-the-art performance.
136 - Bowen Zhang , Yifan Liu , Zhi Tian 2021
Semantic segmentation requires per-pixel prediction for a given image. Typically, the output resolution of a segmentation network is severely reduced due to the downsampling operations in the CNN backbone. Most previous methods employ upsampling decoders to recover the spatial resolution. Various decoders were designed in the literature. Here, we propose a novel decoder, termed dynamic neural representational decoder (NRD), which is simple yet significantly more efficient. As each location on the encoders output corresponds to a local patch of the semantic labels, in this work, we represent these local patches of labels with compact neural networks. This neural representation enables our decoder to leverage the smoothness prior in the semantic label space, and thus makes our decoder more efficient. Furthermore, these neural representations are dynamically generated and conditioned on the outputs of the encoder networks. The desired semantic labels can be efficiently decoded from the neural representations, resulting in high-resolution semantic segmentation predictions. We empirically show that our proposed decoder can outperform the decoder in DeeplabV3+ with only 30% computational complexity, and achieve competitive performance with the methods using dilated encoders with only 15% computation. Experiments on the Cityscapes, ADE20K, and PASCAL Context datasets demonstrate the effectiveness and efficiency of our proposed method.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا