Do you want to publish a course? Click here

Green-Blue Stripe Pattern for Range Sensing from a Single Image

160   0   0.0 ( 0 )
 Added by Changsoo Je
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

In this paper, we present a novel method for rapid high-resolution range sensing using green-blue stripe pattern. We use green and blue for designing high-frequency stripe projection pattern. For accurate and reliable range recovery, we identify the stripe patterns by our color-stripe segmentation and unwrapping algorithms. The experimental result for a naked human face shows the effectiveness of our method.



rate research

Read More

76 - Changsoo Je , Sang Wook Lee , 2015
For structured-light range imaging, color stripes can be used for increasing the number of distinguishable light patterns compared to binary BW stripes. Therefore, an appropriate use of color patterns can reduce the number of light projections and range imaging is achievable in single video frame or in one shot. On the other hand, the reliability and range resolution attainable from color stripes is generally lower than those from multiply projected binary BW patterns since color contrast is affected by object color reflectance and ambient light. This paper presents new methods for selecting stripe colors and designing multiple-stripe patterns for one-shot and two-shot imaging. We show that maximizing color contrast between the stripes in one-shot imaging reduces the ambiguities resulting from colored object surfaces and limitations in sensor/projector resolution. Two-shot imaging adds an extra video frame and maximizes the color contrast between the first and second video frames to diminish the ambiguities even further. Experimental results demonstrate the effectiveness of the presented one-shot and two-shot color-stripe imaging schemes.
Many images shared over the web include overlaid objects, or visual motifs, such as text, symbols or drawings, which add a description or decoration to the image. For example, decorative text that specifies where the image was taken, repeatedly appears across a variety of different images. Often, the reoccurring visual motif, is semantically similar, yet, differs in location, style and content (e.g. text placement, font and letters). This work proposes a deep learning based technique for blind removal of such objects. In the blind setting, the location and exact geometry of the motif are unknown. Our approach simultaneously estimates which pixels contain the visual motif, and synthesizes the underlying latent image. It is applied to a single input image, without any user assistance in specifying the location of the motif, achieving state-of-the-art results for blind removal of both opaque and semi-transparent visual motifs.
Taking an image of an object is at its core a lossy process. The rich information about the three-dimensional structure of the world is flattened to an image plane and decisions such as viewpoint and camera parameters are final and not easily revertible. As a consequence, possibilities of changing viewpoint are limited. Given a single image depicting an object, novel-view synthesis is the task of generating new images that render the object from a different viewpoint than the one given. The main difficulty is to synthesize the parts that are disoccluded; disocclusion occurs when parts of an object are hidden by the object itself under a specific viewpoint. In this work, we show how to improve novel-view synthesis by making use of the correlations observed in 3D models and applying them to new image instances. We propose a technique to use the structural information extracted from a 3D model that matches the image object in terms of viewpoint and shape. For the latter part, we propose an efficient 2D-to-3D alignment method that associates precisely the image appearance with the 3D model geometry with minimal user interaction. Our technique is able to simulate plausible viewpoint changes for a variety of object classes within seconds. Additionally, we show that our synthesized images can be used as additional training data that improves the performance of standard object detectors.
In this paper, we consider the problem to automatically reconstruct garment and body shapes from a single near-front view RGB image. To this end, we propose a layered garment representation on top of SMPL and novelly make the skinning weight of garment independent of the body mesh, which significantly improves the expression ability of our garment model. Compared with existing methods, our method can support more garment categories and recover more accurate geometry. To train our model, we construct two large scale datasets with ground truth body and garment geometries as well as paired color images. Compared with single mesh or non-parametric representation, our method can achieve more flexible control with separate meshes, makes applications like re-pose, garment transfer, and garment texture mapping possible. Code and some data is available at https://github.com/jby1993/BCNet.
We introduce the problem of perpetual view generation - long-range generation of novel views corresponding to an arbitrarily long camera trajectory given a single image. This is a challenging problem that goes far beyond the capabilities of current view synthesis methods, which quickly degenerate when presented with large camera motions. Methods for video generation also have limited ability to produce long sequences and are often agnostic to scene geometry. We take a hybrid approach that integrates both geometry and image synthesis in an iterative `emph{render}, emph{refine} and emph{repeat} framework, allowing for long-range generation that cover large distances after hundreds of frames. Our approach can be trained from a set of monocular video sequences. We propose a dataset of aerial footage of coastal scenes, and compare our method with recent view synthesis and conditional video generation baselines, showing that it can generate plausible scenes for much longer time horizons over large camera trajectories compared to existing methods. Project page at https://infinite-nature.github.io/.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا