Do you want to publish a course? Click here

Probing the Ionization States of Polycyclic Aromatic Hydrocarbons via the 15-20 {mu}m Emission Bands

195   0   0.0 ( 0 )
 Added by Matthew Shannon
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report new correlations between ratios of band intensities of the 15-20 {mu}m emission bands of polycyclic aromatic hydrocarbons (PAHs) in a sample of fifty-seven sources observed with Spitzer/IRS. This sample includes Large Magellanic Cloud point sources from the SAGE-Spec survey, nearby galaxies from the SINGS survey, two Galactic ISM cirrus sources and the spectral maps of the Galactic reflection nebulae NGC 2023 and NGC 7023. We find that the 16.4, 17.4 and 17.8 {mu}m band intensities are inter-correlated in all environments. In NGC 2023 and NGC 7023 these bands also correlate with the 11.0 and 12.7 {mu}m band intensities. The 15.8 {mu}m band correlates only with the 15-20 {mu}m plateau and the 11.2 {mu}m emission. We examine the spatial morphology of these bands and introduce radial cuts. We find that these bands can be spatially organized into three sets: the 12.7, 16.4 and 17.8 {mu}m bands; the 11.2, 15.8 {mu}m bands and the 15-18 {mu}m plateau; and the 11.0 and 17.4 {mu}m bands. We also find that the spatial distribution of the 12.7, 16.4 and 17.8 {mu}m bands can be reconstructed by averaging the spatial distributions of the cationic 11.0 {mu}m and neutral 11.2 {mu}m bands. We conclude that the 17.4 {mu}m band is dominated by cations, the 15.8 {mu}m band by neutral species, and the 12.7, 16.4 and 17.8 {mu}m bands by a combination of the two. These results highlight the importance of PAH ionization for spatially differentiating sub-populations by their 15-20 {mu}m emission variability.



rate research

Read More

27 - Tao Chen , Yi Luo , Aigen Li 2019
Context. The 3.3 $mu$m aromatic C-H stretching band of polycyclic aromatic hydrocarbon (PAH) molecules seen in a wide variety of astrophysical regions is often accompanied by a series of weak satellite bands at ~3.4-3.6 $mu$m. One of these sources, IRAS 21282+5050, a planetary nebula, also exhibits a weak band at ~1.68 $mu$m. While the satellite features at ~3.4-3.6 $mu$m are often attributed to the anharmonicities of PAHs, it is not clear whether overtones or combination bands dominate the 1.68 $mu$m feature. Aims. In this work, we examine the anharmonic spectra of eight PAH molecules, including anthracene, tetracene, pentacene, phenanthrene, chrysene, benz[a]anthracene, pyrene, and perylene, to explore the origin of the infrared bands in the 1.6-1.7 $mu$m waveelngth region. Methods. Density Functional Theory (DFT) in combination with the vibrational second-order perturbation theory (VPT2) is utilized for computing the anharmonic spectra of PAHs. To simulate the vibrational excitation process of PAHs, the Wang-Landau random walk technique is employed. Results. All the dominant bands in the 1.6-1.7 $mu$m wavelength range and in the 3.1-3.5 $mu$m C-H stretching region are calculated and tabulated. It is demonstrated that combination bands dominate the 1.6-1.7 $mu$m region, while overtones are rare and weak in this region. We also calculate the intensity ratios of the 3.1-3.5 $mu$m C-H stretching features to the bands in the 1.6-1.7 $mu$m region, $I_{3.1-3.5}/I_{1.6-1.7}$, for both ground and vibrationally excited states. On average, we obtain $langle I_{3.1-3.5}/I_{1.6-1.7} rangle$ $approx$ 12.6 and $langle I_{3.1-3.5}/I_{1.6-1.7} rangle$ $approx$ 17.6 for PAHs at ground states and at vibrationally excited states, respectively.
We present a new method to accurately describe the ionization fraction and the size distribution of polycyclic aromatic hydrocarbons (PAHs) within astrophysical sources. To this purpose, we have computed the mid-infrared emission spectra of 308 PAH molecules of varying sizes, symmetries, and compactness, generated in a range of radiation fields. We show that the intensity ratio of the solo CH out-of-plane bending mode in PAH cations and anions (referred to as the 11.0 $mu$m band, falling in the 11.0-11.3 $mu$m region for cations and anions) to their 3.3 $mu$m emission, scales with PAH size, similarly to the scaling of the 11.2/3.3 ratio with the number of carbon atoms (N$_{mathrm{C}}$) for neutral molecules. Among the different PAH emission bands, it is the 3.3 $mu$m band intensity which has the strongest correlation with N$_{mathrm{C}}$, and drives the reported PAH intensity ratio correlations with N$_{mathrm{C}}$ for both neutral and ionized PAHs. The 6.2/7.7 intensity ratio, previously adopted to track PAH size, shows no evident scaling with N$_{mathrm{C}}$ in our large sample. We define a new diagnostic grid space to probe PAH charge and size, using the (11.2+11.0)/7.7 and (11.2+11.0)/3.3 PAH intensity ratios respectively. We demonstrate the application of the (11.2+11.0)/7.7 - (11.2+11.0)/3.3 diagnostic grid for galaxies M82 and NGC 253, for the planetary nebula NGC 7027, and the reflection nebulae NGC 2023 and NGC 7023. Finally, we provide quantitative relations for PAH size determination depending on the ionization fraction of the PAHs and the radiation field they are exposed to.
We report new properties of the 11 and 12.7 {mu}m emission complexes of polycyclic aromatic hydrocarbons (PAHs) by applying a Gaussian-based decomposition technique. Using high-resolution textit{Spitzer} Space Telescope data, we study in detail the spectral and spatial characteristics of the 11 and 12.7 {mu}m emission bands in maps of reflection nebulae NGC 7023 and NGC 2023 (North and South) and the star-forming region M17. Profile variations are observed in both the 11 and 12.7 {mu}m emission bands. We identify a neutral contribution to the traditional 11.0 {mu}m PAH band and a cationic contribution to the traditional 11.2 {mu}m band, the latter of which affects the PAH class of the 11.2 {mu}m emission in our sample. The peak variations of the 12.7 {mu}m complex are explained by the competition between two underlying blended components. The spatial distributions of these components link them to cations and neutrals. We conclude that the 12.7 {mu}m emission originates in both neutral and cationic PAHs, lending support to the use of the 12.7/11.2 intensity ratio as a charge proxy.
The amount of deuterium locked up in polycyclic aromatic hydrocarbons (PAHs) has to date been an uncertain value. We present a near-infrared (NIR) spectroscopic survey of HII regions in the Milky Way, Large Magellanic Cloud (LMC), and Small Magellanic Cloud (SMC) obtained with AKARI, which aims to search for features indicative of deuterated PAHs (PAD or Dn-PAH) to better constrain the D/H ratio of PAHs. Fifty-three HII regions were observed in the NIR (2.5-5 {mu}m), using the Infrared Camera (IRC) on board the AKARI satellite. Through comparison of the observed spectra with a theoretical model of deuterated PAH vibrational modes, the aromatic and (a)symmetric aliphatic C-D stretch modes were identified. We see emission features between 4.4-4.8 {mu}m, which could be unambiguously attributed to deuterated PAHs in only six of the observed sources, all of which are located in the Milky Way. In all cases, the aromatic C-D stretching feature is weaker than the aliphatic C-D stretching feature, and, in the case of M17b, this feature is not observed at all. Based on the weak or absent PAD features in most of the observed spectra, it is suggested that the mechanism for PAH deuteration in the ISM is uncommon.
101 - Gargi Shaw , G. J. Ferland 2021
The cosmic-ray ionization rate ($zeta$, s$^{-1}$) plays an important role in the interstellar medium. It controls ion-molecular chemistry and provides a source of heating. Here we perform a grid of calculations using the spectral synthesis code CLOUDY along nine sightlines towards, HD 169454, HD 110432, HD 204827, $lambda$ Cep, X Per, HD 73882, HD 154368, Cyg OB2 5, Cyg OB2 12. The value of $zeta$ is determined by matching the observed column densities of H$_3^+$ and H$_2$. The presence of polycyclic aromatic hydrocarbons (PAHs) affects the free electron density, which changes the H$_3^+$ density and the derived ionization rate. PAHs are ubiquitous in the Galaxy, but there are also regions where PAHs do not exist. Hence, we consider clouds with a range of PAH abundances and show their effects on the H$_3^+$ abundance. We predict an average cosmic-ray ionization rate for H$_2$ ($zeta$(H$_2$))= (7.88 $pm$ 2.89) $times$ 10$^{-16}$ s$^{-1}$ for models with average Galactic PAHs abundances, (PAH/H =10$^{-6.52}$), except Cyg OB2 5 and Cyg OB2 12. The value of $zeta$ is nearly 1 dex smaller for sightlines toward Cyg OB2 12. We estimate the average value of $zeta$(H$_2$)= (95.69 $pm$ 46.56) $times$ 10$^{-16}$ s$^{-1}$ for models without PAHs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا