No Arabic abstract
The cosmic-ray ionization rate ($zeta$, s$^{-1}$) plays an important role in the interstellar medium. It controls ion-molecular chemistry and provides a source of heating. Here we perform a grid of calculations using the spectral synthesis code CLOUDY along nine sightlines towards, HD 169454, HD 110432, HD 204827, $lambda$ Cep, X Per, HD 73882, HD 154368, Cyg OB2 5, Cyg OB2 12. The value of $zeta$ is determined by matching the observed column densities of H$_3^+$ and H$_2$. The presence of polycyclic aromatic hydrocarbons (PAHs) affects the free electron density, which changes the H$_3^+$ density and the derived ionization rate. PAHs are ubiquitous in the Galaxy, but there are also regions where PAHs do not exist. Hence, we consider clouds with a range of PAH abundances and show their effects on the H$_3^+$ abundance. We predict an average cosmic-ray ionization rate for H$_2$ ($zeta$(H$_2$))= (7.88 $pm$ 2.89) $times$ 10$^{-16}$ s$^{-1}$ for models with average Galactic PAHs abundances, (PAH/H =10$^{-6.52}$), except Cyg OB2 5 and Cyg OB2 12. The value of $zeta$ is nearly 1 dex smaller for sightlines toward Cyg OB2 12. We estimate the average value of $zeta$(H$_2$)= (95.69 $pm$ 46.56) $times$ 10$^{-16}$ s$^{-1}$ for models without PAHs.
The amount of deuterium locked up in polycyclic aromatic hydrocarbons (PAHs) has to date been an uncertain value. We present a near-infrared (NIR) spectroscopic survey of HII regions in the Milky Way, Large Magellanic Cloud (LMC), and Small Magellanic Cloud (SMC) obtained with AKARI, which aims to search for features indicative of deuterated PAHs (PAD or Dn-PAH) to better constrain the D/H ratio of PAHs. Fifty-three HII regions were observed in the NIR (2.5-5 {mu}m), using the Infrared Camera (IRC) on board the AKARI satellite. Through comparison of the observed spectra with a theoretical model of deuterated PAH vibrational modes, the aromatic and (a)symmetric aliphatic C-D stretch modes were identified. We see emission features between 4.4-4.8 {mu}m, which could be unambiguously attributed to deuterated PAHs in only six of the observed sources, all of which are located in the Milky Way. In all cases, the aromatic C-D stretching feature is weaker than the aliphatic C-D stretching feature, and, in the case of M17b, this feature is not observed at all. Based on the weak or absent PAD features in most of the observed spectra, it is suggested that the mechanism for PAH deuteration in the ISM is uncommon.
We observationally investigate the relation between the photoelectric heating efficiency in PDRs and the charge of PAHs, which are considered to play a key role in photoelectric heating. Using PACS onboard Herschel, we observed six PDRs spanning a wide range of FUV radiation fields (G_0=100-10^5). To measure the photoelectric heating efficiency, we obtained the intensities of the main cooling lines, i.e., the [OI]63um, 145um, and [CII]158um, as well as the FIR continuum intensity. We used Spitzer/IRS spectroscopic mapping observations to investigate the MIR PAH features in the same regions. We decomposed the MIR PAH emission into that of neutral (PAH^0) and positively ionized (PAH^+) species to derive the fraction of the positively charged PAHs, and compare it to the photoelectric heating efficiency. The heating efficiency traced by ([OI]63um+[OI]145um+[CII]158um) / TIR, ranges between 0.1% and 0.9% in different sources, and the fraction of PAH^+ relative to (PAH^0 + PAH^+) spans from 0(+11)% to 87(+/-10)%. All positions with a high PAH^+ fraction show a low heating efficiency, and all positions with a high heating efficiency have a low PAH^+ fraction, supporting the scenario in which a positive grain charge results in a decreased heating efficiency. Theoretical estimates of the photoelectric heating efficiency show a stronger dependence on the charging parameter gamma=G_0 T^{1/2}/n_e than the observed efficiency reported in this study, and the discrepancy is significant at low gamma. The photoelectric heating efficiency on PAHs, traced by ([OI]63um+[OI]145um+[CII]158um) / (PAH+[OI]63um+[OI]145um+[CII]158um), shows a much better match between the observations and the theoretical estimates. The good agreement of the photoelectric heating efficiency on PAHs with a theoretical model indicates the dominant contribution of PAHs to the photoelectric heating. (abridged for arXiv)
As images and spectra from ISO and Spitzer have provided increasingly higher-fidelity representations of the mid-infrared (MIR) and Polycyclic Aromatic Hydrocarbon (PAH) emission from galaxies and galactic and extra-galactic regions, more systematic efforts have been devoted to establishing whether the emission in this wavelength region can be used as a reliable star formation rate indicator. This has also been in response to the extensive surveys of distant galaxies that have accumulated during the cold phase of the Spitzer Space Telescope. Results so far have been somewhat contradictory, reflecting the complex nature of the PAHs and of the mid-infrared-emitting dust in general. The two main problems faced when attempting to define a star formation rate indicator based on the mid-infrared emission from galaxies and star-forming regions are: (1) the strong dependence of the PAH emission on metallicity; (2) the heating of the PAH dust by evolved stellar populations unrelated to the current star formation. I review the status of the field, with a specific focus on these two problems, and will try to quantify the impact of each on calibrations of the mid-infrared emission as a star formation rate indicator.
We present a new method to accurately describe the ionization fraction and the size distribution of polycyclic aromatic hydrocarbons (PAHs) within astrophysical sources. To this purpose, we have computed the mid-infrared emission spectra of 308 PAH molecules of varying sizes, symmetries, and compactness, generated in a range of radiation fields. We show that the intensity ratio of the solo CH out-of-plane bending mode in PAH cations and anions (referred to as the 11.0 $mu$m band, falling in the 11.0-11.3 $mu$m region for cations and anions) to their 3.3 $mu$m emission, scales with PAH size, similarly to the scaling of the 11.2/3.3 ratio with the number of carbon atoms (N$_{mathrm{C}}$) for neutral molecules. Among the different PAH emission bands, it is the 3.3 $mu$m band intensity which has the strongest correlation with N$_{mathrm{C}}$, and drives the reported PAH intensity ratio correlations with N$_{mathrm{C}}$ for both neutral and ionized PAHs. The 6.2/7.7 intensity ratio, previously adopted to track PAH size, shows no evident scaling with N$_{mathrm{C}}$ in our large sample. We define a new diagnostic grid space to probe PAH charge and size, using the (11.2+11.0)/7.7 and (11.2+11.0)/3.3 PAH intensity ratios respectively. We demonstrate the application of the (11.2+11.0)/7.7 - (11.2+11.0)/3.3 diagnostic grid for galaxies M82 and NGC 253, for the planetary nebula NGC 7027, and the reflection nebulae NGC 2023 and NGC 7023. Finally, we provide quantitative relations for PAH size determination depending on the ionization fraction of the PAHs and the radiation field they are exposed to.
We report new correlations between ratios of band intensities of the 15-20 {mu}m emission bands of polycyclic aromatic hydrocarbons (PAHs) in a sample of fifty-seven sources observed with Spitzer/IRS. This sample includes Large Magellanic Cloud point sources from the SAGE-Spec survey, nearby galaxies from the SINGS survey, two Galactic ISM cirrus sources and the spectral maps of the Galactic reflection nebulae NGC 2023 and NGC 7023. We find that the 16.4, 17.4 and 17.8 {mu}m band intensities are inter-correlated in all environments. In NGC 2023 and NGC 7023 these bands also correlate with the 11.0 and 12.7 {mu}m band intensities. The 15.8 {mu}m band correlates only with the 15-20 {mu}m plateau and the 11.2 {mu}m emission. We examine the spatial morphology of these bands and introduce radial cuts. We find that these bands can be spatially organized into three sets: the 12.7, 16.4 and 17.8 {mu}m bands; the 11.2, 15.8 {mu}m bands and the 15-18 {mu}m plateau; and the 11.0 and 17.4 {mu}m bands. We also find that the spatial distribution of the 12.7, 16.4 and 17.8 {mu}m bands can be reconstructed by averaging the spatial distributions of the cationic 11.0 {mu}m and neutral 11.2 {mu}m bands. We conclude that the 17.4 {mu}m band is dominated by cations, the 15.8 {mu}m band by neutral species, and the 12.7, 16.4 and 17.8 {mu}m bands by a combination of the two. These results highlight the importance of PAH ionization for spatially differentiating sub-populations by their 15-20 {mu}m emission variability.