Do you want to publish a course? Click here

Sn-doped Bi1.1Sb0.9Te2S, a bulk topological insulator with ideal properties

126   0   0.0 ( 0 )
 Added by Satya Kushwaha
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

A long-standing issue in topological insulator research has been to find a material that provides an ideal platform for characterizing topological surface states without interference from bulk electronic states and can reliably be fabricated as bulk crystals. This material would be a bulk insulator, have a surface state Dirac point energy well isolated from the bulk valence and conduction bands, have high surface state electronic mobility, and be growable as large, high quality bulk single crystals. Here we show that this major materials obstacle in the field is overcome by crystals of lightly Sn-doped Bi1.1Sb0.9Te2S (Sn-BSTS) grown by the Vertical Bridgeman method, which we characterize here via angle-resolved photoemission spectroscopy, scanning tunneling microscopy, transport studies of the bulk and surface states, and X-ray diffraction and Raman scattering. We present this new material as a bulk topological insulator that can be reliably grown and studied in many laboratories around the world.



rate research

Read More

Kondo insulator FeSb$_2$ with large Seebeck coefficient would have potential in thermoelectric applications in cryogenic temperature range if it had not been for large thermal conductivity $kappa$. Here we studied the influence of different chemical substitutions at Fe and Sb site on thermal conductivity and thermoelectric effect in high quality single crystals. At $5%$ of Te doping at Sb site thermal conductivity is suppressed from $sim 250$ W/Km in undoped sample to about 8 W/Km. However, Cr and Co doping at Fe site suppresses thermal conductivity more slowly than Te doping, and even at 20$%$ Cr/Co doping the thermal conductivity remains $sim 30$ W/Km. The analysis of different contributions to phonon scattering indicates that the giant suppression of $kappa$ with Te is due to the enhanced point defect scattering originating from the strain field fluctuations. In contrast, Te-doping has small influence on the correlation effects and then for small Te substitution the large magnitude of the Seebeck coefficient is still preserved, leading to the enhanced thermoelectric figure of merit ($ZTsim 0.05$ at $sim 100$ K) in Fe(Sb$_{0.9}$Te$_{0.1}$)$_2$.
We report the low-temperature magneto-transport in the bulk-insulating single crystal of topological insulator Sn doped Bi1.1Sb0.9Te2S. The Shubnikov-de Haas oscillations appear with their reciprocal frequency proportional to cos/theta , demonstrating the dominant transport of topological surface states. While the magnetic field is rotating in the sample surface, the planar Hall effect arises with sizeable oscillations following a relation of cos/theta sin/theta . Its amplitude reaches the maximum at the lowest temperature and drops to nearly zero at the temperature higher than 100 K. All these evidences consolidate such planar Hall oscillations as a new golden criterion on the topological surface transport.
Rare earth ions typically exhibit larger magnetic moments than transition metal ions and thus promise the opening of a wider exchange gap in the Dirac surface states of topological insulators. Yet, in a recent photoemission study of Eu-doped Bi$_2$Te$_3$ films, the spectra remained gapless down to $T = 20;text{K}$. Here, we scrutinize whether the conditions for a substantial gap formation in this system are present by combining spectroscopic and bulk characterization methods with theoretical calculations. For all studied Eu doping concentrations, our atomic multiplet analysis of the $M_{4,5}$ x-ray absorption and magnetic circular dichroism spectra reveals a Eu$^{2+}$ valence and confirms a large magnetic moment, consistent with a $4f^7 ; {^8}S_{7/2}$ ground state. At temperatures below $10;text{K}$, bulk magnetometry indicates the onset of antiferromagnetic (AFM) ordering. This is in good agreement with density functional theory, which predicts AFM interactions between the Eu impurities. Our results support the notion that antiferromagnetism can coexist with topological surface states in rare-earth doped Bi$_2$Te$_3$ and call for spectroscopic studies in the kelvin range to look for novel quantum phenomena such as the quantum anomalous Hall effect.
The evolution of the electronic structures of strongly correlated insulators with doping has long been a central fundamental question in condensed matter physics; it is also of great practical relevance for applications. We have studied the evolution of NiO under hole {em and} electron doping using high-quality thin film and a wide range of experimental and theoretical methods. The evolution is in both cases very smooth with dopant concentration. The band gap is asymmetric under electron and hole doping, consistent with a charge-transfer insulator picture, and is reduced faster under hole than electron doping. For both electron and hole doping, occupied states are introduced at the top of the valence band. The formation of deep donor levels under electron doping and the inability to pin otherwise empty states near the conduction band edge is indicative that local electron addition and removal energies are dominated by a Mott-like Hubbard $U$-interaction even though the global bandgap is predominantly a charge-transfer type gap.
We report time- and angle-resolved photoemission spectroscopy measurements on the topological insulator Bi2Se3. We observe oscillatory modulations of the electronic structure of both the bulk and surface states at a frequency of 2.23 THz due to coherent excitation of an A1g phonon mode. A distinct, additional frequency of 2.05 THz is observed in the surface state only. The lower phonon frequency at the surface is attributed to the termination of the crystal and thus reduction of interlayer van der Waals forces, which serve as restorative forces for out-of-plane lattice distortions. DFT calculations quantitatively reproduce the magnitude of the surface phonon softening. These results represent the first band-resolved evidence of the A1g phonon mode coupling to the surface state in a topological insulator.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا