Do you want to publish a course? Click here

Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 {mu}m

270   0   0.0 ( 0 )
 Added by Zhipeng Qin
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Black phosphorus, a newly emerged two-dimensional material, has attracted wide attention as novel photonic material. Here, multi-layer black phosphorus is successfully fabricated by liquid phase exfoliation method. By employing black phosphorus as saturable absorber, we demonstrate a passively Q-switched Er-doped ZBLAN fiber laser at the wavelength of 2.8 {mu}m. The modulation depth and saturation fluence of the black phosphorus saturable absorber are measured to be 15% and 9 {mu}J/cm2, respectively. The Q-switched fiber laser delivers a maximum average power of 485 mW with corresponding pulse energy of 7.7 {mu}J and pulse width of 1.18 {mu}s at repetition rate of 63 kHz. To the best of our knowledge, this is the first time to demonstrate that black phosphorus can realize Q-switching of 2.8-{mu}m fiber laser. Our research results show that black phosphorus is a promising saturable absorber for mid-infrared pulsed lasers.



rate research

Read More

With the proposal of dual-wavelength pumping (DWP) scheme, DWP Er:ZBLAN fiber lasers at 3.5 um have become a fascinating area of research. However, limited by the absence of suitable saturable absorber, passively Q-switched and mode-locked fiber lasers have not been realized in this spectral region. Based on the layer-dependent bandgap and excellent photoelectric characteristics of black phosphorus (BP), BP is a promising candidate for saturable absorber near 3.5 um. Here, we fabricated a 3.5-um saturable absorber mirror (SAM) by transferring liquid-phase exfoliated BP flakes onto a gold-coated mirror. With the as-prepared BP SAM, we realized stable Q-switching and continuous-wave mode-locking operations in the DWP Er:ZBLAN fiber lasers at 3.5 um. To the best of our knowledge, it is the first time to achieve passively Q-switched and mode-locked pulses in 3.5 um spectral region. The research results will not only promote the development of 3.5-um pulsed fiber lasers but also open the photonic application of two-dimensional materials in this spectral region
It attracts wide interest to seek universe saturable absorber covering wavelengths from near infrared to mid-infrared band. Multilayer black phosphorus, with variable direct bandgap (0.3-2 eV) depending on the layer number, becomes a good alternative as a universe saturable absorber for pulsed lasers. In this contribution, we first experimentally demonstrated broadband saturable absorption of multilayer black phosphorus from 1 {mu}m to 2.7 {mu}m wavelength. With the as-fabricated black phosphorus nanoflakes as saturable absorber, stable Q-switching operation of bulk lasers at 1.03 {mu}m, 1.93 {mu}m, 2.72 {mu}m were realized, respectively. In contrast with large-bandgap semiconducting transition metal dichalcogenides, such as MoS2, MoSe2, multilayer black phosphorus shows particular advantage at the long wavelength regime thanks to its narrow direct bandgap. This work will open promising optoelectronic applications of black phosphorus in mid-infrared spectral region and further demonstrate that BP may fill the gap of between zero-bandgap graphene and large-bandgap TMDs.
Mid-infrared saturable absorber mirror is successfully fabricated by transferring the mechanically exfoliated black phosphorus onto the gold-coated mirror. With the as-prepared black phosphorus saturable absorber mirror, a continuous-wave passively mode-locked Er:ZBLAN fiber laser is demonstrated at the wavelength of 2.8 um, which delivers a maximum average output power of 613 mW, a repetition rate of 24 MHz and a pulse duration of 42 ps. To the best of our knowledge, it is the first time to demonstrate black phosphorus mode-locked laser at 2.8 um wavelength. Our results demonstrate the feasibility of black phosphorus flake as a new two-dimensional material for application in mid-infrared ultrafast photonics.
We proposed a narrow spectral bandwidth Erbium-doped fiber (EDF) laser Q-switched by a homemade saturable dynamic induced grating (SDIG) which is introduced via reforming the structure of a fiber saturable absorbers FSA with a piece of EDF and a fiber Bragg grating. The SDIG integrates both saturable absorption and spectral filtering effect simultaneously, which was confirmed through theoretical analysis and experimental results for the first time, to the best of our knowledge. Further study verified that the spectral width of the Q-switched emissions is decided by the length of the SDIG and the input power of the pump source. The Q-switched pulse with the narrowest spectral width of about 29.1 pm achieved in this work is the narrowest bandwidth pulse in the domain of the FSA Q-switched fiber lasers when the length of SDIG and pump power are 20 cm and 250 mW, respectively. Our method provides a simple way to obtain the Q-switched pulses with narrow bandwidths, which have promising applications for nonlinear frequency conversion, Doppler LIDAR and coherent beam combinations.
Generally speaking, the self-sweeping effect relies on the dynamical grating formed in a gain fiber. Here, the normal self-sweeping was generated in a pump-free ytterbium-doped fiber which serves as a fiber saturable absorber and is introduced to the laser cavity by a circulator in this experiment. The sweeping rate and the sweeping range alter as usual, both of which can be controlled by the pump power. Further, a new self-pulse signal is observed and discussed in this work, which shows the difference of the self-sweeping effects between active fiber and fiber saturable absorber.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا