Do you want to publish a course? Click here

Dimensionless ratios: characteristics of quantum liquids and their phase transitions

53   0   0.0 ( 0 )
 Added by Xi-Wen Guan
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Dimensionless ratios of physical properties can characterize low-temperature phases in a wide variety of materials. As such, the Wilson ratio (WR), the Kadowaki-Woods ratio and the Wiedemann--Franz law capture essential features of Fermi liquids in metals, heavy fermions, etc. Here we prove that the phases of many-body interacting multi-component quantum liquids in one dimension (1D) can be described by WRs based on the compressibility, susceptibility and specific heat associated with each component. These WRs arise due to additivity rules within subsystems reminiscent of the rules for multi-resistor networks in series and parallel --- a novel and useful characteristic of multi-component Tomonaga-Luttinger liquids (TLL) independent of microscopic details of the systems. Using experimentally realised multi-species cold atomic gases as examples, we prove that the Wilson ratios uniquely identify phases of TLL, while providing universal scaling relations at the boundaries between phases. Their values within a phase are solely determined by the stiffnesses and sound velocities of subsystems and identify the internal degrees of freedom of said phase such as its spin-degeneracy. This finding can be directly applied to a wide range of 1D many-body systems and reveals deep physical insights into recent experimental measurements of the universal thermodynamics in ultracold atoms and spins.



rate research

Read More

In recent years, dynamical quantum phase transitions (DQPTs) have emerged as a useful theoretical concept to characterize nonequilibrium states of quantum matter. DQPTs are marked by singular behavior in an textit{effective free energy} $lambda(t)$, which, however, is a global measure, making its experimental or theoretical detection challenging in general. We introduce two local measures for the detection of DQPTs with the advantage of requiring fewer resources than the full effective free energy. The first, called the textit{real-local} effective free energy $lambda_M(t)$, is defined in real space and is therefore suitable for systems where locally resolved measurements are directly accessible such as in quantum-simulator experiments involving Rydberg atoms or trapped ions. We test $lambda_M(t)$ in Ising chains with nearest-neighbor and power-law interactions, and find that this measure allows extraction of the universal critical behavior of DQPTs. The second measure we introduce is the textit{momentum-local} effective free energy $lambda_k(t)$, which is targeted at systems where momentum-resolved quantities are more naturally accessible, such as through time-of-flight measurements in ultracold atoms. We benchmark $lambda_k(t)$ for the Kitaev chain, a paradigmatic system for topological quantum matter, in the presence of weak interactions. Our introduced local measures for effective free energies can further facilitate the detection of DQPTs in modern quantum-simulator experiments.
The dynamics of quantum phase transitions poses one of the most challenging problems in modern many-body physics. Here, we study a prototypical example in a clean and well-controlled ultracold atom setup by observing the emergence of coherence when crossing the Mott insulator to superfluid quantum phase transition. In the one-dimensional Bose-Hubbard model, we find perfect agreement between experimental observations and numerical simulations for the resulting coherence length. We thereby perform a largely certified analogue quantum simulation of this strongly correlated system reaching beyond the regime of free quasiparticles. Experimentally, we additionally explore the emergence of coherence in higher dimensions where no classical simulations are available, as well as for negative temperatures. For intermediate quench velocities, we observe a power-law behaviour of the coherence length, reminiscent of the Kibble-Zurek mechanism. However, we find exponents that strongly depend on the final interaction strength and thus lie outside the scope of this mechanism.
43 - Fadi Sun , Jinwu Ye 2016
There exists many quantum or topological phases in Nature. One well known organization principle is through various quantum or topological phases transitions between or among these phases. Another is through either complete or in-complete devil staircases in their quantized forms. Here, we show that both classes of organization principle appear in an experimentally accessible system: strongly interacting spinor bosons subject to any of the linear combinations of the Rashba and Dresselhaus spin-orbit coupling (SOC) in the space of the two SOC parameters $ ( alpha, beta) $ in a square lattice. In the strong coupling limit, it leads to a new quantum spin model called Rotated Ferromagnetic Heisenberg model (RFHM). The RFHM leads to rich and unconventional magnetic phases even in a bipartite lattice. For the first class, by identifying a suitable low energy mode, we investigate a new quantum Lifshitz transition from the Y-x to the IC-SkX-y phase. For the second class, we introduce the topological rational and irrational winding numbers $ W $ to characterize the incomplete or complete devil staircases and also perform their quantizations. The IC-YZ-x/LQx phases form a Cantor set with a fractal dimension along the complete devil staircase. They also take most of measures in the incomplete devil staircases when $ beta ll alpha $. Quantum chaos and quantum information scramblings along the diagonal line $ alpha=beta $ are discussed. Implications on un-conventional magnetic ordered phases detected in the 4d- or 5d-orbital strongly correlated materials with SOC and in the current or near future cold atom systems are presented.
Symmetry-breaking quantum phase transitions play a key role in several condensed matter, cosmology and nuclear physics theoretical models. Its observation in real systems is often hampered by finite temperatures and limited control of the system parameters. In this work we report for the first time the experimental observation of the full quantum phase diagram across a transition where the spatial parity symmetry is broken. Our system is made of an ultra-cold gas with tunable attractive interactions trapped in a spatially symmetric double-well potential. At a critical value of the interaction strength, we observe a continuous quantum phase transition where the gas spontaneously localizes in one well or the other, thus breaking the underlying symmetry of the system. Furthermore, we show the robustness of the asymmetric state against controlled energy mismatch between the two wells. This is the result of hysteresis associated with an additional discontinuous quantum phase transition that we fully characterize. Our results pave the way to the study of quantum critical phenomena at finite temperature, the investigation of macroscopic quantum tunneling of the order parameter in the hysteretic regime and the production of strongly quantum entangled states at critical points.
305 - Yu Chen , Zhenhua Yu , Hui Zhai 2016
The superfluid to Mott insulator transition and the superradiant transition are textbook examples for quantum phase transition and coherent quantum optics, respectively. Recent experiments in ETH and Hamburg succeeded in loading degenerate bosonic atomic gases in optical lattices inside a cavity, which enables the first experimental study of the interplay between these two transitions. In this letter we present the theoretical phase diagram for the ETH experimental setup, and determine the phase boundaries and the orders of the phase transitions between the normal superfluid phase, the superfluid with superradiant light, the normal Mott insulator and the Mott insulator with superradiant light. We find that in contrast to the second-order superradiant transition in a weakly interacting Bose condensate, strong correlations in the superfluid nearby a Mott transition can render the superradiant transition to a first order one. Our results will stimulate further experimental studies of interactions between cavity light and strongly interacting quantum matters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا