No Arabic abstract
The dynamics of quantum phase transitions poses one of the most challenging problems in modern many-body physics. Here, we study a prototypical example in a clean and well-controlled ultracold atom setup by observing the emergence of coherence when crossing the Mott insulator to superfluid quantum phase transition. In the one-dimensional Bose-Hubbard model, we find perfect agreement between experimental observations and numerical simulations for the resulting coherence length. We thereby perform a largely certified analogue quantum simulation of this strongly correlated system reaching beyond the regime of free quasiparticles. Experimentally, we additionally explore the emergence of coherence in higher dimensions where no classical simulations are available, as well as for negative temperatures. For intermediate quench velocities, we observe a power-law behaviour of the coherence length, reminiscent of the Kibble-Zurek mechanism. However, we find exponents that strongly depend on the final interaction strength and thus lie outside the scope of this mechanism.
In recent years, dynamical quantum phase transitions (DQPTs) have emerged as a useful theoretical concept to characterize nonequilibrium states of quantum matter. DQPTs are marked by singular behavior in an textit{effective free energy} $lambda(t)$, which, however, is a global measure, making its experimental or theoretical detection challenging in general. We introduce two local measures for the detection of DQPTs with the advantage of requiring fewer resources than the full effective free energy. The first, called the textit{real-local} effective free energy $lambda_M(t)$, is defined in real space and is therefore suitable for systems where locally resolved measurements are directly accessible such as in quantum-simulator experiments involving Rydberg atoms or trapped ions. We test $lambda_M(t)$ in Ising chains with nearest-neighbor and power-law interactions, and find that this measure allows extraction of the universal critical behavior of DQPTs. The second measure we introduce is the textit{momentum-local} effective free energy $lambda_k(t)$, which is targeted at systems where momentum-resolved quantities are more naturally accessible, such as through time-of-flight measurements in ultracold atoms. We benchmark $lambda_k(t)$ for the Kitaev chain, a paradigmatic system for topological quantum matter, in the presence of weak interactions. Our introduced local measures for effective free energies can further facilitate the detection of DQPTs in modern quantum-simulator experiments.
In recent years, dynamical phase transitions and out-of-equilibrium criticality have been at the forefront of ultracold gases and condensed matter research. Whereas universality and scaling are established topics in equilibrium quantum many-body physics, out-of-equilibrium extensions of such concepts still leave much to be desired. Using exact diagonalization and the time-dependent variational principle in uniform martrix product states, we calculate the time evolution of the local order parameter and Loschmidt return rate in transverse-field Ising chains with antiferromagnetic power law-decaying interactions, and map out the corresponding rich dynamical phase diagram. textit{Anomalous} cusps in the return rate, which are ubiquitous at small quenches within the ordered phase in the case of ferromagnetic long-range interactions, are absent within the accessible timescales of our simulations. We attribute this to much weaker domain-wall binding in the antiferromagnetic case. For quenches across the quantum critical point, textit{regular} cusps appear in the return rate and connect to the local order parameter changing sign, indicating the concurrence of two major concepts of dynamical phase transitions. Our results consolidate conclusions of previous works that a necessary condition for the appearance of anomalous cusps in the return rate after quenches within the ordered phase is for topologically trivial local spin flips to be the energetically dominant excitations in the spectrum of the quench Hamiltonian. Our findings are readily accessible in modern trapped-ion setups, and we outline the associated experimental considerations.
In this letter we point out that the Lindblad spectrum of a quantum many-body system displays a segment structure and exhibits two different energy scales in the strong dissipation regime. One energy scale determines the separation between different segments, being proportional to the dissipation strength, and the other energy scale determines the broadening of each segment, being inversely proportional to the dissipation strength. Ultilizing a relation between the dynamics of the second Renyi entropy and the Lindblad spectrum, we show that these two energy scales respectively determine the short- and the long-time dynamics of the second Renyi entropy starting from a generic initial state. This gives rise to opposite behaviors, that is, as the dissipation strength increases, the short-time dynamics becomes faster and the long-time dynamics becomes slower. We also interpret the quantum Zeno effect as specific initial states that only occupy the Lindblad spectrum around zero, for which only the broadening energy scale of the Lindblad spectrum matters and gives rise to suppressed dynamics with stronger dissipation. We illustrate our theory with two concrete models that can be experimentally verified.
Quantum many-body systems exhibit diverse phases characterized by various types of correlations. One aspect of quantum correlations is whether a quantum phase is gapless or gapped, and there are already well-developed tools to probe these correlations. Another aspect is whether a quantum phase possesses a well-defined quasi-particle description or not, and the experimental method sensitive to this is still less developed. Here we present a protocol probing many-body correlations by time-dependently ramping a parameter in Hamiltonians to the same target value with variable velocities. The first-order correction beyond the adiabatic limit due to the finite ramping velocity is universal and path-independent, and reveals many-body correlations of the equilibrium phases at the target values. We term this method as the non-adiabatic linear response, and experimentally demonstrate it in studying the Bose-Hubbard model in ultracold-atom platforms. It is shown both theoretically and experimentally that this non-adiabatic linear response is significant in the quantum critical regime without well-defined quasi-particles, and is vanishingly small deeply in both superfluid and Mott insulators with well-defined quasi-particles.
Rydberg atoms in optical tweezer arrays provide a playground for nonequilibrium quantum many-body physics. The PXP model describes the dynamics of such systems in the strongly interacting Rydberg blockade regime and notably exhibits weakly nonergodic dynamics due to quantum many-body scars. Here, we study the PXP model in a strong staggered external field, which has been proposed to manifest quasiparticle confinement in light of a mapping to a lattice gauge theory. We characterize this confining regime using both numerical exact diagonalization and perturbation theory around the strong-field limit. In addition to the expected emergent symmetry generated by the staggered field, we find a second emergent symmetry that is special to the PXP model. The interplay between these emergent symmetries and the Rydberg blockade constraint dramatically slows down the systems dynamics beyond naive expectations. We devise a nested Schrieffer-Wolff perturbation theory to properly account for the new emergent symmetry and show that this treatment is essential to understand the numerically observed relaxation time scales. We also discuss connections to Hilbert space fragmentation and trace the origin of the new emergent symmetry to a nearly-$SU(2)$ algebra discovered in the context of many-body scarring.