No Arabic abstract
The superfluid to Mott insulator transition and the superradiant transition are textbook examples for quantum phase transition and coherent quantum optics, respectively. Recent experiments in ETH and Hamburg succeeded in loading degenerate bosonic atomic gases in optical lattices inside a cavity, which enables the first experimental study of the interplay between these two transitions. In this letter we present the theoretical phase diagram for the ETH experimental setup, and determine the phase boundaries and the orders of the phase transitions between the normal superfluid phase, the superfluid with superradiant light, the normal Mott insulator and the Mott insulator with superradiant light. We find that in contrast to the second-order superradiant transition in a weakly interacting Bose condensate, strong correlations in the superfluid nearby a Mott transition can render the superradiant transition to a first order one. Our results will stimulate further experimental studies of interactions between cavity light and strongly interacting quantum matters.
We study a system with competing short- and global-range interactions in the framework of the Bose-Hubbard model. Using a mean-field approximation we obtain the phase diagram of the system and observe four different phases: a superfluid, a supersolid, a Mott insulator and a charge density wave, where the transitions between the various phases can be either of first or second order. We qualitatively support these results using Monte-Carlo simulations. An analysis of the low-energy excitations shows that the second-order phase transition from the charge density wave to the supersolid is associated with the softening of particle- and hole-like excitations which give rise to a gapless mode and an amplitude Higgs mode in the supersolid phase. This amplitude Higgs mode is further transformed into a roton mode which softens at the supersolid to superfluid phase transition.
We present an unbiased numerical density-matrix renormalization group study of the one-dimensional Bose-Hubbard model supplemented by nearest-neighbor Coulomb interaction and bond dimerization. It places the emphasis on the determination of the ground-state phase diagram and shows that, besides dimerized Mott and density-wave insulating phases, an intermediate symmetry-protected topological Haldane insulator emerges at weak Coulomb interactions for filling factor one, which disappears, however, when the dimerization becomes too large. Analyzing the critical behavior of the model, we prove that the phase boundaries of the Haldane phase to Mott insulator and density-wave states belong to the Gaussian and Ising universality classes with central charges $c=1$ and $c=1/2$, respectively, and merge in a tricritical point. Interestingly we can demonstrate a direct Ising quantum phase transition between the dimerized Mott and density-wave phases above the tricritical point. The corresponding transition line terminates at a critical end point that belongs to the universality class of the dilute Ising model with $c=7/10$. At even stronger Coulomb interactions the transition becomes first order.
We investigate the quantum measurement noise effects on the dynamics of an atomic Bose lattice gas inside an optical resonator. We describe the dynamics by means of a hybrid model consisting of a Bose--Hubbard Hamiltonian for the atoms and a Heisenberg--Langevin equation for the lossy cavity field mode. We assume that the atoms are prepared initially in the ground state of the lattice Hamiltonian and then start to interact with the cavity mode. We show that the cavity field fluctuations originating from the dissipative outcoupling of photons from the resonator lead to vastly different effects in the different possible ground state phases, i.e., the superfluid, the supersolid, the Mott- and the charge-density-wave phases. In the former two phases with the presence of a superfluid wavefunction, the quantum measurement noise appears as a driving term leading to excess noise depletion of the ground state. The time scale for the system to leave the ground scale is determined analytically. For the latter two incompressible phases, the quantum noise results in the fluctuation of the chemical potential. We derive an analytical expression for the corresponding broadening of the quasiparticle resonances.
In this paper, we study the dynamics of the Bose-Hubbard model by using time-dependent Gutzwiller methods. In particular, we vary the parameters in the Hamiltonian as a function of time, and investigate the temporal behavior of the system from the Mott insulator to the superfluid (SF) crossing a second-order phase transition. We first solve a time-dependent Schrodinger equation for the experimental setup recently done by Braun et.al. [Proc. Nat. Acad. Sci. 112, 3641 (2015)] and show that the numerical and experimental results are in fairly good agreement. However, these results disagree with the Kibble-Zurek scaling. From our numerical study, we reveal a possible source of the discrepancy. Next, we calculate the critical exponents of the correlation length and vortex density in addition to the SF order parameter for a Kibble-Zurek protocol. We show that beside the freeze time $hat{t}$, there exists another important time, $t_{rm eq}$, at which an oscillating behavior of the SF amplitude starts. From calculations of the exponents of the correlation length and vortex density with respect to a quench time $tQ$, we obtain a physical picture of a coarsening process. Finally, we study how the system evolves after the quench. We give a global picture of dynamics of the Bose-Hubbard model.
In this paper, we study the nonequilibrium dynamics of the Bose-Hubbard model with the nearest-neighbor repulsion by using time-dependent Gutzwiller (GW) methods. In particular, we vary the hopping parameters in the Hamiltonian as a function of time, and investigate the dynamics of the system from the density wave (DW) to the superfluid (SF) crossing a first-order phase transition and vice-versa. From the DW to SF, we find scaling laws for the correlation length and vortex density with respect to the quench time. This is a reminiscence of the Kibble-Zurek scaling for continuous phase transitions and contradicts the common expectation. We give a possible explanation for this observation. On the other hand from the SF to DW, the system evolution depends on the initial SF state. When the initial state is the ground-state obtained by the static GW methods, a coexisting state of the SF and DW domains forms after passing through the critical point. Coherence of the SF order parameter is lost as the system evolves. This is a phenomenon similar to the glass transition in classical systems. When the state starts from the SF with small local phase fluctuations, the system obtains a large-size DW-domain structure with thin domain walls.