No Arabic abstract
The possibility of measuring neutral-current coherent elastic neutrino-nucleus scattering (CENNS) at the TEXONO experiment has opened high expectations towards probing exotic neutrino properties. Focusing on low threshold Germanium-based targets with kg-scale mass, we find a remarkable efficiency not only for detecting CENNS events due to the weak interaction, but also for probing novel electromagnetic neutrino interactions. Specifically, we demonstrate that such experiments are complementary in performing precision Standard Model tests as well as in shedding light on sub-leading effects due to neutrino magnetic moment and neutrino charge radius. This work employs realistic nuclear structure calculations based on the quasi-particle random phase approximation (QRPA) and takes into consideration the crucial quenching effect corrections. Such a treatment, in conjunction with a simple statistical analysis, shows that the attainable sensitivities are improved by one order of magnitude as compared to previous studies.
The presence of medium and external magnetic field change electromagnetic properties of neutrino. In this article the behavior of neutrino magnetic moment in electromagnetic field is considered. On the basis the Bargmann-Michel-Telegdi equation for the case of models with CP invariance and P nonconservation the new type of neutrino resonances $ u_L leftrightarrow u_R$ in the electromagnetic field is predicted.
The electromagnetic properties of neutrinos, which are either trivial or negligible in the context of the Standard Model, can probe new physics and have significant implications in astrophysics and cosmology. The current best direct limits on the neutrino millicharges and magnetic moments are both derived from data taken with germanium detectors with low thresholds at keV levels. In this paper, we discuss in detail a robust, ab initio method: the multiconfiguration relativistic random phase approximation, that enables us to reliably understand the germanium detector response at the sub-keV level, where atomic many-body physics matters. Using existing data with sub-keV thresholds, limits on reactor antineutrinos millicharge, magnetic moment, and charge radius squared are derived. The projected sensitivities for next generation experiments are also given and discussed.
Neutrino magnetic moment ($ u$MM) is an important property of massive neutrinos. The recent anomalous excess at few keV electronic recoils observed by the Xenon1T collaboration might indicate a $sim 2.2times10^{-11} mu_B$ effective neutrino magnetic moment ($mu_ u^{eff}$) from solar neutrinos. Therefore, it is essential to carry out the $ u$MM searches at a different experiment to confirm or exclude such hypothesis. We study the feasibility of doing $ u$MM measurement with 4 kton active mass at Jinping neutrino experiment using electron recoil data from both natural and artificial neutrino sources. The sensitivity of $mu_ u^{eff}$ can reach $1.2times10^{-11}mu_B$ at 90% C.L. with 10-year data taking of solar neutrinos. Besides the intrinsic low energy background $^{14}$C in the liquid scintillator, we find the sensitivity to $ u$MM is highly correlated with the systematic uncertainties of $pp$ and $^{85}$Kr. Reducing systematic uncertainties ($pp$ and $^{85}$Kr) and the intrinsic background ($^{14}$C and $^{85}$Kr) can help to improve sensitivities below these levels and reach the region of astrophysical interest. With a 3 mega-Curie (MCi) artificial neutrino source $^{51}$Cr installed at Jinping neutrino detector for 55 days, it could give us a sensitivity to the electron neutrino magnetic moment ($mu_{ u_e}$) with $1.1times10^{-11} mu_B$ at 90% C.L.. With the combination of those two measurements, the flavor structure of the neutrino magnetic moment can be also probed at Jinping.
The electromagnetic properties of neutrinos have attracted considerable attention from researchers for many decades (see [1] for a review). However, until recently, there was no indication in favour of nonzero electromagnetic properties of neutrinos either from laboratory experiments with ground-based neutrino sources or from observations of astrophysical neutrino fluxes. The situation changed after the XENON collaboration reported [2] results of the search for new physics with low-energy electronic recoil data recorded with the XENON1T detector. The results show an excess of events over the known backgrounds in the recoil energy which, as one of the possible explanations, admit the presence of a sizable neutrino magnetic moment, the value of which is of the order of the existing laboratory limitations. In these short notes we give a brief introduction to neutrino electromagnetic properties and focus on the most important constraints on neutrino magnetic moments, charge radii and millicharges from the terrestrial experiments and astrophysical considerations. The promising new possibilities for constraining neutrino electromagnetic properties in future experiments are also discussed.
The proposed Long Baseline Neutrino Observatory (LBNO) initially consists of $sim 20$ kton liquid double phase TPC complemented by a magnetised iron calorimeter, to be installed at the Pyhasalmi mine, at a distance of 2300 km from CERN. The conventional neutrino beam is produced by 400 GeV protons accelerated at the SPS accelerator delivering 700 kW of power. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the $L/E$ behaviour, and distinguishing effects arising from $delta_{CP}$ and matter. In this paper we show how this comprehensive physics case can be further enhanced and complemented if a neutrino beam produced at the Protvino IHEP accelerator complex, at a distance of 1160 km, and with modest power of 450 kW is aimed towards the same far detectors. We show that the coupling of two independent sub-MW conventional neutrino and antineutrino beams at different baselines from CERN and Protvino will allow to measure CP violation in the leptonic sector at a confidence level of at least $3sigma$ for 50% of the true values of $delta_{CP}$ with a 20 kton detector. With a far detector of 70 kton, the combination allows a $3sigma$ sensitivity for 75% of the true values of $delta_{CP}$ after 10 years of running. Running two independent neutrino beams, each at a power below 1 MW, is more within todays state of the art than the long-term operation of a new single high-energy multi-MW facility, which has several technical challenges and will likely require a learning curve.