Do you want to publish a course? Click here

Probing neutrino magnetic moment at the Jinping neutrino experiment

83   0   0.0 ( 0 )
 Added by Jiajie Ling
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Neutrino magnetic moment ($ u$MM) is an important property of massive neutrinos. The recent anomalous excess at few keV electronic recoils observed by the Xenon1T collaboration might indicate a $sim 2.2times10^{-11} mu_B$ effective neutrino magnetic moment ($mu_ u^{eff}$) from solar neutrinos. Therefore, it is essential to carry out the $ u$MM searches at a different experiment to confirm or exclude such hypothesis. We study the feasibility of doing $ u$MM measurement with 4 kton active mass at Jinping neutrino experiment using electron recoil data from both natural and artificial neutrino sources. The sensitivity of $mu_ u^{eff}$ can reach $1.2times10^{-11}mu_B$ at 90% C.L. with 10-year data taking of solar neutrinos. Besides the intrinsic low energy background $^{14}$C in the liquid scintillator, we find the sensitivity to $ u$MM is highly correlated with the systematic uncertainties of $pp$ and $^{85}$Kr. Reducing systematic uncertainties ($pp$ and $^{85}$Kr) and the intrinsic background ($^{14}$C and $^{85}$Kr) can help to improve sensitivities below these levels and reach the region of astrophysical interest. With a 3 mega-Curie (MCi) artificial neutrino source $^{51}$Cr installed at Jinping neutrino detector for 55 days, it could give us a sensitivity to the electron neutrino magnetic moment ($mu_{ u_e}$) with $1.1times10^{-11} mu_B$ at 90% C.L.. With the combination of those two measurements, the flavor structure of the neutrino magnetic moment can be also probed at Jinping.



rate research

Read More

We discuss the limits on the neutrino magnetic moment and hypothetical interactions with a hidden unparticle sector, coming from the first neutrino data release of the Borexino experiment. The observed spectrum in Borexino depends weakly on the solar model used in the analysis, since most of the signal comes from the mono-energetic 7Be neutrinos. This fact allows us to calibrate the nu-e scattering cross section through the spectral shape. In this way, we have derived a limit on the magnetic moment for the neutrinos coming from the Sun (in which a nu_mu and nu_tau component is present): mu_nu<8.4E-11 mu_B (90%CL) which is comparable with those obtained from low energy reactor experiments. Moreover, we improve the previous upper limit on magnetic moment of the nu_tau by three orders of magnitude and the limit on the coupling constant of the neutrino with a hidden unparticle sector.
The existence of sterile neutrino is an open question in neutrino physics up to now. The method of neutrino oscillometry provides a powerful tool to test the common 3+1 sterile neutrino hypothesis, i.e. three active flavors and one sterile falvor. There are several antineutrino sources can be used for this method. One of them is the well known isotope chain of $^{144}{rm Ce}-$$^{144}{rm Pr}$ with initial activity around 50-100 kCi. It has compact size and might be installed either outside or inside the detector. Another one is the short-lived isotope $rm^8Li$, which can be produced in nuclear reaction of a proton beam hitting beryllium target. The Lithium source has only the out-of-detector option due to its large size. The proposed Jinping water-based liquid scintillator detector will be used as a detection volume. Above experimental setups will allow us to cover the current best fit values of oscillation parameters with 90% C.L. At the same time, it is sensitive to the region of Neutrino-4 result.
In this paper we provide an updated analysis of the neutrino magnetic moments (NMMs), discussing both the constraints on the magnitudes of the three transition moments Lambda_i as well as the role of the CP violating phases present both in the mixing matrix and in the NMM matrix. The scattering of solar neutrinos off electrons in Borexino provides the most stringent restrictions, due to its robust statistics and the low energies observed, below 1 MeV. Our new limit on the effective neutrino magnetic moment which follows from the most recent Borexino data is 3.1 x 10^-11 mu_B at 90% C.L. This corresponds to the individual transition magnetic moment constraints: |Lambda_1| < 5.6 x10^-11 mu_B, |Lambda_2| < 4.0 x 10^-11 mu_B, and |Lambda_3| < 3.1 x 10^-11 mu_B (90% C.L.), irrespective of any complex phase. Indeed, the incoherent admixture of neutrino mass eigenstates present in the solar flux makes Borexino insensitive to the Majorana phases present in the NMM matrix. For this reason we also provide a global analysis including the case of reactor and accelerator neutrino sources, and presenting the resulting constraints for different values of the relevant CP phases. Improved reactor and accelerator neutrino experiments will be needed in order to underpin the full profile of the neutrino electromagnetic properties.
Motivated by the first observation of coherent-elastic neutrino-nucleus scattering at the COHERENT experiment, we confront the neutrino dipole portal giving rise to the transition of the standard model neutrinos to sterile neutrinos with the recently released CENNS 10 data from the liquid argon as well as the CsI data of the COHERENT experiment. Performing statistical analysis of those data, we show how the transition magnetic moment can be constrained for the range of the sterile neutrino mass between 10 keV and 40 MeV.
To ensure compliance with the experimental requirement for ultra-low background, in this study the radioactivity of stainless steels manufactured by smelting is thoroughly investigated. Raw materials, stage samples, and commercial samples are investigated by glow discharge mass spectrometry (GDMS) and/or with high-purity germanium detectors (HPGe) at both the ground level and/or the China Jinping Underground Laboratory. Custom-made stainless steel samples are found to have radioactivity levels comparable to those in other low-background experiments. The comprehensive results regarding the radioactivity level in materials to be used in the proposed Jinping Neutrino Experiment are reported.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا