Do you want to publish a course? Click here

Detecting Electronic Coherence by Multidimensional Broadband Stimulated X-Ray Raman Signals

148   0   0.0 ( 0 )
 Added by Konstantin Dorfman
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nonstationary molecular states which contain electronic coherences can be impulsively created and manipulated by using recently-developed ultrashort optical and X-ray pulses via photoexcitation, photoionization and Auger processes. We propose several stimulated-Raman detection schemes that can monitor the phase-sensitive electronic and nuclear dynamics. Three detection protocols of an X-ray broadband probe are compared - frequency dispersed transmission, integrated photon number change, and total pulse energy change. In addition each can be either linear or quadratic in the X-ray probe intensity. These various signals offer different gating windows into the molecular response which is described by correlation functions of electronic polarizabilities. Off-resonant and resonant signals are compared.



rate research

Read More

We have calculated the resonant and nonresonant contributions to attosecond impulsive stimulated electronic Raman scattering (SERS) in regions of autoionizing transitions. Comparison with Multiconfiguration Time-Dependent Hartree-Fock (MCTDHF) calculations find that attosecond SERS is dominated by continuum transitions and not autoionizing resonances. These results agree quantitatively with a rate equation that includes second-order Raman and first-and second-order photoionization rates. Such rate models can be extended to larger molecular systems. Our results indicate that attosecond SERS transition probabilities may be understood in terms of two-photon generalized cross sections even in the high-intensity limit for extreme ultraviolet wavelengths.
In Impulsive Stimulated Raman Scattering vibrational oscillations, coherently stimulated by a femtosecond Raman pulse, are real time monitored and read out as intensity modulations in the transmission of a temporally delayed probe pulse. Critically, in order to retrieve broadband Raman spectra, a fine sampling of the time delays between the Raman and probe pulses is required, making conventional ISRS ineffective for probing irreversible phenomena and/or weak scatterers typically demanding long acquisition times, with signal to noise ratios that crucially depend on the pulse fluences and overlap stabilities. To overcome such limitations, here we introduce Chirped based Impulsive Stimulated Raman Scattering (CISRS) technique. Specifically, we show how introducing a chirp in the probe pulse can be exploited for recording the Raman information without scanning the Raman-probe pulse delay. Then we experimentally demonstrate with a few examples how to use the introduced scheme to measure Raman spectra.
Iron-sulfur complexes play an important role in biological processes such as metabolic electron transport. A detailed understanding of the mechanism of long range electron transfer requires knowledge of the electronic structure of the complexes, which has traditionally been challenging to obtain, either by theory or by experiment, but the situation has begun to change with advances in quantum chemical methods and intense free electron laser light sources. We compute the signals from stimulated X-ray Raman spectroscopy (SXRS) and absorption spectroscopy of homovalent and mixed-valence [2Fe-2S] complexes, using the {it ab initio} density matrix renormalization group (DMRG) algorithm. The simulated spectra show clear signatures of the theoretically predicted dense low-lying excited states within the d-d manifold. Furthermore, the difference in signal intensity between the absorption-active and Raman-active states provides a potential mechanism to selectively excite states by a proper tuning of the excitation pump, to access the electronic dynamics within this manifold.
171 - Daniel J. Haxton 2016
The global optimum for valence population transfer in the NO$_2$ molecule driven by impulsive x-ray stimulated Raman scattering of one-femtosecond x-ray pulses tuned below the Oxygen K-edge is determined with the Multiconfiguration Time-Dependent Hartree-Fock method, a fully-correlated first-principles treatment that allows for the ionization of every electron in the molecule. Final valence state populations computed in the fixed-nuclei, nonrelativistic approximation are reported as a function of central wavelength and intensity. The convergence of the calculations with respect to their adjustable parameters is fully tested. Fixing the 1fs duration but varying the central frequency and intensity of the pulse, without chirp, orientation-averaged maximum population transfer of 0.7% to the valence B$_1$ state is obtained at an intensity of 3.16$times$10$^{17}$ W cm$^{-2}$, with the central frequency substantially 6eV red-detuned from the 2nd order optimum; 2.39% is obtained at one specific orientation. The behavior near the global optimum, below the Oxygen K-edge, is consistent with the mechanism of nonresonant Raman transitions driven by the near-edge fine structure oscillator strength.
Chiral four-wave-mixing signals are calculated using the irreducible tensor formalism. Different polarization and crossing angle configurations allow to single out the magnetic dipole and the electric quadrupole interactions. Other configurations can reveal that the chiral interaction occurs at a given step within the nonlinear interaction pathways contributing to the signal. Applications are made to the study of valence excitations of S-ibuprofen by chiral Stimulated X-ray Raman signals at the Carbon K-edge and by chiral visible 2D Electronic Spectroscopy.teraction pathways contributing to the signal.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا