Do you want to publish a course? Click here

Broadband Impulsive Stimulated Raman Scattering based on a Chirped Detection

77   0   0.0 ( 0 )
 Added by Giovanni Batignani
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In Impulsive Stimulated Raman Scattering vibrational oscillations, coherently stimulated by a femtosecond Raman pulse, are real time monitored and read out as intensity modulations in the transmission of a temporally delayed probe pulse. Critically, in order to retrieve broadband Raman spectra, a fine sampling of the time delays between the Raman and probe pulses is required, making conventional ISRS ineffective for probing irreversible phenomena and/or weak scatterers typically demanding long acquisition times, with signal to noise ratios that crucially depend on the pulse fluences and overlap stabilities. To overcome such limitations, here we introduce Chirped based Impulsive Stimulated Raman Scattering (CISRS) technique. Specifically, we show how introducing a chirp in the probe pulse can be exploited for recording the Raman information without scanning the Raman-probe pulse delay. Then we experimentally demonstrate with a few examples how to use the introduced scheme to measure Raman spectra.



rate research

Read More

The interaction between ultrashort light pulses and non-absorbing materials is dominated by Impulsive Stimulated Raman Scattering (ISRS). The description of ISRS in the context of pump&probe experiments is based on effective classical models describing the interaction between the phonon and pulsed electromagnetic fields. Here we report a theoretical description of ISRS where we do not make any semi-classical approximation and we treat both photonic and phononic degrees of freedom at the quantum level. The results of the quantum model are compared with semiclassical results and validated by means of spectrally resolved pump&probe measurements on $alpha$-quartz.
171 - Daniel J. Haxton 2016
The global optimum for valence population transfer in the NO$_2$ molecule driven by impulsive x-ray stimulated Raman scattering of one-femtosecond x-ray pulses tuned below the Oxygen K-edge is determined with the Multiconfiguration Time-Dependent Hartree-Fock method, a fully-correlated first-principles treatment that allows for the ionization of every electron in the molecule. Final valence state populations computed in the fixed-nuclei, nonrelativistic approximation are reported as a function of central wavelength and intensity. The convergence of the calculations with respect to their adjustable parameters is fully tested. Fixing the 1fs duration but varying the central frequency and intensity of the pulse, without chirp, orientation-averaged maximum population transfer of 0.7% to the valence B$_1$ state is obtained at an intensity of 3.16$times$10$^{17}$ W cm$^{-2}$, with the central frequency substantially 6eV red-detuned from the 2nd order optimum; 2.39% is obtained at one specific orientation. The behavior near the global optimum, below the Oxygen K-edge, is consistent with the mechanism of nonresonant Raman transitions driven by the near-edge fine structure oscillator strength.
Nonstationary molecular states which contain electronic coherences can be impulsively created and manipulated by using recently-developed ultrashort optical and X-ray pulses via photoexcitation, photoionization and Auger processes. We propose several stimulated-Raman detection schemes that can monitor the phase-sensitive electronic and nuclear dynamics. Three detection protocols of an X-ray broadband probe are compared - frequency dispersed transmission, integrated photon number change, and total pulse energy change. In addition each can be either linear or quadratic in the X-ray probe intensity. These various signals offer different gating windows into the molecular response which is described by correlation functions of electronic polarizabilities. Off-resonant and resonant signals are compared.
We have calculated the resonant and nonresonant contributions to attosecond impulsive stimulated electronic Raman scattering (SERS) in regions of autoionizing transitions. Comparison with Multiconfiguration Time-Dependent Hartree-Fock (MCTDHF) calculations find that attosecond SERS is dominated by continuum transitions and not autoionizing resonances. These results agree quantitatively with a rate equation that includes second-order Raman and first-and second-order photoionization rates. Such rate models can be extended to larger molecular systems. Our results indicate that attosecond SERS transition probabilities may be understood in terms of two-photon generalized cross sections even in the high-intensity limit for extreme ultraviolet wavelengths.
Stimulated Raman scattering (SRS) in plasma in a non-eigenmode regime is studied theoretically and numerically. Different from normal SRS with the eigen electrostatic mode excited, the non-eigenmode SRS is developed at plasma density $n_e>0.25n_c$ when the laser amplitude is larger than a certain threshold. To satisfy the phase-matching conditions of frequency and wavenumber, the excited electrostatic mode has a constant frequency around half of the incident light frequency $omega_0/2$, which is no longer the eigenmode of electron plasma wave $omega_{pe}$. Both the scattered light and the electrostatic wave are trapped in plasma with their group velocities being zero. Super hot electrons are produced by the non-eigen electrostatic wave. Our theoretical model is validated by particle-in-cell simulations. The SRS driven in this non-eigenmode regime may play a considerable role in the experiments of laser plasma interactions as long as the laser intensity is higher than $10^{15}$W/cm$^2$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا