Do you want to publish a course? Click here

Comment on Terahertz time-domain spectroscopy of transient metallic and superconducting states (arXiv:1506.06758)

176   0   0.0 ( 0 )
 Added by Daniele Nicoletti
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We comment on the model proposed by Orenstein and Dodge in arXiv:1506.06758v1, which describes time-domain terahertz measurements of transiently generated, high-electron-mobility (or superconducting) phases of solids. The authors main conclusion is that time-domain terahertz spectroscopy does not measure a response function that is mathematically identical to the transient optical conductivity. We show that although this is correct, the difference between the measured response function and the microscopic optical conductivity is small for realistic experimental parameters. We also show that for the experiments reported by our group on light-induced superconducting-like phases in cuprates and in organic conductors, the time-domain terahertz yields a very good estimate for the optical conductivity.



rate research

Read More

208 - J. Orenstein , J. S. Dodge 2015
Time-resolved terahertz time-domain spectroscopy (THz-TDS) is an ideal tool for probing photoinduced nonequilibrium metallic and superconducting states. Here, we focus on the interpretation of the two-dimensional response function $Sigma(omega;t)$ that it measures, examining whether it provides an accurate snapshot of the instantaneous optical conductivity, $sigma(omega;t)$. For the Drude model with a time-dependent carrier density, we show that $Sigma(omega;t)$ is not simply related to $sigma(omega;t)$. The difference in the two response functions is most pronounced when the momentum relaxation rate of photocarriers is long, as would be the case in a system that becomes superconducting following pulsed photoexcitation. From the analysis of our model, we identify signatures of photoinduced superconductivity that could be seen by time-resolved THz-TDS.
The recent Comment by Vorontsov [arXiv:2007.13696] claims that surface pair-density-wave superconductivity with critical temperature higher than the bulk FFLO critical temperature is not supported by microscopic theory. The conclusion is reached by using an approximate semi-microscopic quasiclassical approach. Here we show that a fully microscopic approach unambiguously demonstrates the existence of surface pair-density-wave superconductivity.
Recently, Wang $et$ $al.$ have reported the observation of unconventional superconductivity in the Weyl semimetal TaAs [arXiv:1607.00513]. The authors have written textit{A conductance plateau and sharp double dips are observed in the point contact spectra, indicating p-wave like unconventional superconductivity. Furthermore, the zero bias conductance peak in low temperature regime is detected, suggesting potentially the existence of Majorana zero modes. The experimentally observed tunneling spectra can be interpreted with a novel mirror-symmetry protected topological superconductor induced in TaAs, which can exhibit zero bias and double finite bias peaks, and double conductance dips in the measurements}. In this comment we show that for a superconducting point contact, the features like a zero-bias conductance peak, a plateau and single or multiple conductance dips might arise due to simple contact-heating related effects. Such features are routinely observed in point contacts involving a wide variety of superconductors when the experiments are not performed in the right regime of mesoscopic transport. We also show that the data presented by Wang $et$ $al.$ in a single transport regime of point contact do not confirm tip induced superconductivity (TISC). Even if it is assumed that Wang $et$ $al.$ achieved TISC on TaAs, all the spectra that they have reported show striking similarities with the type of spectra expected in thermal regime of transport. Such data cannot be used for extracting any spectroscopic information and based on such data any discussion on p-wave superconductivity or the emergence of Majorana modes should be considered invalid. This version (v2) also includes a brief discussion on the response of Wang $et$ $al.$ to the first version (v1) of this comment. Correct ballistic regime data on TaAs point contacts can be found in arXiv:1607.05131 (2016).
526 - A. Pashkin , M. Porer , M. Beyer 2010
We measure the anisotropic mid-infrared response of electrons and phonons in bulk YBa2Cu3O7 after femtosecond photoexcitation. A line shape analysis of specific lattice modes reveals their transient occupation and coupling to the superconducting condensate. The apex oxygen vibration is strongly excited within 150 fs demonstrating that the lattice absorbs a major portion of the pump energy before the quasiparticles are thermalized. Our results attest to substantial electron-phonon scattering and introduce a powerful concept probing electron-lattice interactions in a variety of complex materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا