Do you want to publish a course? Click here

Femtosecond Quasiparticle and Phonon Dynamics in Superconducting YBa2Cu3O7 Studied by Wideband Terahertz Spectroscopy

492   0   0.0 ( 0 )
 Added by Alexej Pashkin
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We measure the anisotropic mid-infrared response of electrons and phonons in bulk YBa2Cu3O7 after femtosecond photoexcitation. A line shape analysis of specific lattice modes reveals their transient occupation and coupling to the superconducting condensate. The apex oxygen vibration is strongly excited within 150 fs demonstrating that the lattice absorbs a major portion of the pump energy before the quasiparticles are thermalized. Our results attest to substantial electron-phonon scattering and introduce a powerful concept probing electron-lattice interactions in a variety of complex materials.



rate research

Read More

267 - C. W. Luo , I. H. Wu , P. C. Cheng 2012
Quasiparticle dynamics of FeSe single crystals revealed by dual-color transient reflectivity measurements ({Delta}R/R) provides unprecedented information on Fe-based superconductors. The amplitude of fast component in {Delta}R/R clearly tells a competing scenario between spin fluctuations and superconductivity. Together with the transport measurements, the relaxation time analysis further exhibits anomalous changes at 90 K and 230 K. The former manifests a structure phase transition as well as the associated phonon softening. The latter suggests a previously overlooked phase transition or crossover in FeSe. The electron-phonon coupling constant {lambda} is found to be 0.16, identical to the value of theoretical calculations. Such a small {lambda} demonstrates an unconventional origin of superconductivity in FeSe.
107 - Q. Wu , H. X. Zhou , Y. L. Wu 2019
Distinctive superconducting behaviors between bulk and monolayer FeSe make it challenging to obtain a unified picture of all FeSe-based superconductors. We investigate the ultrafast quasiparticle (QP) dynamics of an intercalated superconductor (Li1-xFex)OHFe1-ySe, which is a bulk crystal but shares a similar electronic structure with single-layer FeSe on SrTiO3. We obtain the electron-phonon coupling (EPC) constant {lambda}A1g (0.22 +/- 0.04), which well bridges that of bulk FeSe crystal and single-layer FeSe on SrTiO3. Moreover, we find that such a positive correlation between {lambda}A1g and superconducting Tc holds among all known FeSe-based superconductors, even in line with reported FeAs-based superconductors. Our observation indicates possible universal role of EPC in the superconductivity of all known categories of iron-based superconductors, which is a critical step towards achieving a unified superconducting mechanism for all iron-based superconductors.
137 - S. Grothe , Shun Chi , P. Dosanjh 2012
Defects in LiFeAs are studied by scanning tunneling microscopy (STM) and spectroscopy (STS). Topographic images of the five predominant defects allow the identification of their position within the lattice. The most commonly observed defect is associated with an Fe site and does not break the local lattice symmetry, exhibiting a bound state near the edge of the smaller gap in this multi-gap superconductor. Three other common defects, including one also on an Fe site, are observed to break local lattice symmetry and are pair-breaking indicated by clear in-gap bound states, in addition to states near the smaller gap edge. STS maps reveal complex, extended real-space bound state patterns, including one with a chiral distribution of the local density of states (LDOS). The multiple bound state resonances observed within the gaps and at the inner gap edge are consistent with theoretical predictions for s$^{pm}$ gap symmetry proposed for LiFeAs and other iron pnictides.
We have performed soft x-ray and ultrahigh-resolution laser-excited photoemission measurements on tetragonal FeSe, which was recently identified as a superconductor. Energy dependent study of valence band is compared to band structure calculations and yields a reasonable assignment of partial densities of states. However, the sharp peak near the Fermi level slightly deviates from the calculated energy position, giving rise to the necessity of self-energy correction. We have also performed ultrahigh-resolution laser photoemission experiment on FeSe and observed the suppression of intensity around the Fermi level upon cooling.
185 - K. Nakayama , T. Sato , P. Richard 2009
We have performed high-resolution angle-resolved photoemission spectroscopy on the optimally-doped Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ compound and determined the accurate momentum dependence of the superconducting (SC) gap in four Fermi-surface sheets including a newly discovered outer electron pocket at the M point. The SC gap on this pocket is nearly isotropic and its magnitude is comparable ($Delta$ $sim$ 11 meV) to that of the inner electron and hole pockets ($sim$12 meV), although it is substantially larger than that of the outer hole pocket ($sim$6 meV). The Fermi-surface dependence of the SC gap value is basically consistent with $Delta$($k$) = $Delta$$_0$cos$k_x$cos$k_y$ formula expected for the extended s-wave symmetry. The observed finite deviation from the simple formula suggests the importance of multi-orbital effects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا