Do you want to publish a course? Click here

Boundary Schwarz lemma for holomorphic self-mappings of strongly pseudoconvex domains

137   0   0.0 ( 0 )
 Added by Xieping Wang
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we generalize a recent work of Liu et al. from the open unit ball $mathbb B^n$ to more general bounded strongly pseudoconvex domains with $C^2$ boundary. It turns out that part of the main result in this paper is in some certain sense just a part of results in a work of Bracci and Zaitsev. However, the proofs are significantly different: the argument in this paper involves a simple growth estimate for the Caratheodory metric near the boundary of $C^2$ domains and the well-known Grahams estimate on the boundary behavior of the Caratheodory metric on strongly pseudoconvex domains, while Bracci and Zaitsev use other arguments.



rate research

Read More

146 - Guangbin Ren , Xieping Wang 2015
In this paper, we present an alternative and elementary proof of a sharp version of the classical boundary Schwarz lemma by Frolova et al. with initial proof via analytic semigroup approach and Julia-Caratheodory theorem for univalent holomorphic self-mappings of the open unit disk $mathbb Dsubset mathbb C$. Our approach has its extra advantage to get the extremal functions of the inequality in the boundary Schwarz lemma.
In this paper we introduce, via a Phragmen-Lindelof type theorem, a maximal plurisubharmonic function in a strongly pseudoconvex domain. We call such a function the {sl pluricomplex Poisson kernel} because it shares many properties with the classical Poisson kernel of the unit disc. In particular, we show that such a function is continuous, it is zero on the boundary except at one boundary point where it has a non-tangential simple pole, and reproduces pluriharmonic functions. We also use such a function to obtain a new intrinsic version of the classical Julias Lemma and Julia-Wolff-Caratheodory Theorem.
We construct a complete proper holomorphic embedding from any strictly pseudoconvex domain with $mathcal{C}^2$-boundary in $mathbb{C}^n$ into the unit ball of $mathbb{C}^N$, for $N$ large enough, thereby answering a question of Alarcon and Forstneric.
159 - Mark Elin , David Shoikhet 2011
In this paper we give some quantative characteristics of boundary asymptotic behavior of semigroups of holomorphic self-mappings of the unit disk including the limit curvature of their trajectories at the boundary Denjoy--Wolff point. This enable us to establish an asymptotic rigidity property for semigroups of parabolic type.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا