Do you want to publish a course? Click here

Boundary Schwarz lemma for holomorphic self-mappings of strongly pseudoconvex domains

147   0   0.0 ( 0 )
 Added by Xieping Wang
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we generalize a recent work of Liu et al. from the open unit ball $mathbb B^n$ to more general bounded strongly pseudoconvex domains with $C^2$ boundary. It turns out that part of the main result in this paper is in some certain sense just a part of results in a work of Bracci and Zaitsev. However, the proofs are significantly different: the argument in this paper involves a simple growth estimate for the Caratheodory metric near the boundary of $C^2$ domains and the well-known Grahams estimate on the boundary behavior of the Caratheodory metric on strongly pseudoconvex domains, while Bracci and Zaitsev use other arguments.



rate research

Read More

154 - Guangbin Ren , Xieping Wang 2015
In this paper, we present an alternative and elementary proof of a sharp version of the classical boundary Schwarz lemma by Frolova et al. with initial proof via analytic semigroup approach and Julia-Caratheodory theorem for univalent holomorphic self-mappings of the open unit disk $mathbb Dsubset mathbb C$. Our approach has its extra advantage to get the extremal functions of the inequality in the boundary Schwarz lemma.
In this paper we introduce, via a Phragmen-Lindelof type theorem, a maximal plurisubharmonic function in a strongly pseudoconvex domain. We call such a function the {sl pluricomplex Poisson kernel} because it shares many properties with the classical Poisson kernel of the unit disc. In particular, we show that such a function is continuous, it is zero on the boundary except at one boundary point where it has a non-tangential simple pole, and reproduces pluriharmonic functions. We also use such a function to obtain a new intrinsic version of the classical Julias Lemma and Julia-Wolff-Caratheodory Theorem.
We construct a complete proper holomorphic embedding from any strictly pseudoconvex domain with $mathcal{C}^2$-boundary in $mathbb{C}^n$ into the unit ball of $mathbb{C}^N$, for $N$ large enough, thereby answering a question of Alarcon and Forstneric.
170 - Mark Elin , David Shoikhet 2011
In this paper we give some quantative characteristics of boundary asymptotic behavior of semigroups of holomorphic self-mappings of the unit disk including the limit curvature of their trajectories at the boundary Denjoy--Wolff point. This enable us to establish an asymptotic rigidity property for semigroups of parabolic type.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا