Do you want to publish a course? Click here

Boundary behavior and rigidity of semigroups of holomorphic mappings

170   0   0.0 ( 0 )
 Added by Mark Elin
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we give some quantative characteristics of boundary asymptotic behavior of semigroups of holomorphic self-mappings of the unit disk including the limit curvature of their trajectories at the boundary Denjoy--Wolff point. This enable us to establish an asymptotic rigidity property for semigroups of parabolic type.



rate research

Read More

Let $(phi_t)$ be a holomorphic semigroup of the unit disc (i.e., the flow of a semicomplete holomorphic vector field) without fixed points in the unit disc and let $Omega$ be the starlike at infinity domain image of the Koenigs function of $(phi_t)$. In this paper we completely characterize the type of convergence of the orbits of $(phi_t)$ to the Denjoy-Wolff point in terms of the shape of $Omega$. In particular we prove that the convergence is non-tangential if and only if the domain $Omega$ is `quasi-symmetric with respect to vertical axes. We also prove that such conditions are equivalent to the curve $[0,infty) i tmapsto phi_t(z)$ being a quasi-geodesic in the sense of Gromov. Also, we characterize the tangential convergence in terms of the shape of $Omega$.
146 - Xieping Wang , Guangbin Ren 2015
In this paper, we generalize a recent work of Liu et al. from the open unit ball $mathbb B^n$ to more general bounded strongly pseudoconvex domains with $C^2$ boundary. It turns out that part of the main result in this paper is in some certain sense just a part of results in a work of Bracci and Zaitsev. However, the proofs are significantly different: the argument in this paper involves a simple growth estimate for the Caratheodory metric near the boundary of $C^2$ domains and the well-known Grahams estimate on the boundary behavior of the Caratheodory metric on strongly pseudoconvex domains, while Bracci and Zaitsev use other arguments.
131 - John P. DAngelo , Jiri Lebl 2014
We introduce several homotopy equivalence relations for proper holomorphic mappings between balls. We provide examples showing that the degree of a rational proper mapping between balls (in positive codimension) is not a homotopy invariant. In domain dimension at least 2, we prove that the set of homotopy classes of rational proper mappings from a ball to a higher dimensional ball is finite. By contrast, when the target dimension is at least twice the domain dimension, it is well known that there are uncountably many spherical equivalence classes. We generalize this result by proving that an arbitrary homotopy of rational maps whose endpoints are spherically inequivalent must contain uncountably many spherically inequivalent maps. We introduce Whitney sequences, a precise analogue (in higher dimensions) of the notion of finite Blaschke product (in one dimension). We show that terms in a Whitney sequence are homotopic to monomial mappings, and we establish an additional result about the target dimensions of such homotopies.
131 - John P DAngelo , Jiri Lebl 2008
We make several new contributions to the study of proper holomorphic mappings between balls. Our results include a degree estimate for rational proper maps, a new gap phenomenon for convex families of arbitrary proper maps, and an interesting result about inverse images.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا