Do you want to publish a course? Click here

Intrinsic spin Hall effect in systems with striped spin-orbit coupling

121   0   0.0 ( 0 )
 Added by Marco Grilli
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Rashba spin-orbit coupling arising from structure inversion asymmetry couples spin and momentum degrees of freedom providing a suitable (and very intensively investigated) environment for spintronic effects and devices. Here we show that in the presence of strong disorder, non-homogeneity in the spin-orbit coupling gives rise to a finite spin Hall conductivity in contrast with the corresponding case of a homogeneous linear spin-orbit coupling. In particular, we examine the inhomogeneity arising from a striped structure for a two-dimensional electron gas, affecting both density and Rashba spin-orbit coupling. We suggest that this situation can be realized at oxide interfaces with periodic top gating.



rate research

Read More

We investigate the spin Hall effect (SHE) in a wide class of spin-orbit coupling systems by using spin force picture. We derive the general relation equation between spin force and spin current and show that the longitudinal force component can induce a spin Hall current, from which we reproduce the spin Hall conductivity obtained previously using Kubos formula. This simple spin force picture gives a clear and intuitive explanation for SHE.
We study the effect of anisotropy of the Rashba coupling on the extrinsic spin Hall effect due to spin-orbit active adatoms on graphene. In addition to the intrinsic spin-orbit coupling, a generalized anisotropic Rashba coupling arising from the breakdown of both mirror and hexagonal symmetries of pristine graphene is considered. We find that Rashba anisotropy can strongly modify the dependence of the spin Hall angle on carrier concentration. Our model provides a simple and general description of the skew scattering mechanism due to the spin-orbit coupling that is induced by proximity to large adatom clusters.
150 - Jun Zhou , Biao Wang , Mengjie Li 2014
We propose a new type of the spin Seebeck effect (SSE) emerging from the Rashba spin-orbit coupling in asymmetric four-terminal electron systems. This system generates spin currents or spin voltages along the longitudinal direction parallel to the temperature gradient in the absence of magnetic fields. The remarkable result arises from the breaking of reflection symmetry along the transverse direction. In the meantime, the SSE along the transverse direction, so-called the spin Nernst effect, with spin currents or spin voltages perpendicular to the temperature gradient can be simultaneously realized in our system. We further find that it is possible to use the temperature differences between four leads to tune the spin Seebeck coefficients.
We report on the observation of the acoustic spin Hall effect that facilitates lattice motion induced spin current via spin orbit interaction (SOI). Under excitation of surface acoustic wave (SAW), we find a spin current flows orthogonal to the propagation direction of a surface acoustic wave (SAW) in non-magnetic metals. The acoustic spin Hall effect manifests itself in a field-dependent acoustic voltage in non-magnetic metal (NM)/ferromagnetic metal (FM) bilayers. The acoustic voltage takes a maximum when the NM layer thickness is close to its spin diffusion length, vanishes for NM layers with weak SOI and increases linearly with the SAW frequency. To account for these results, we find the spin current must scale with the SOI and the time derivative of the lattice displacement. Such form of spin current can be derived from a Berry electric field associated with time varying Berry curvature and/or an unconventional spin-lattice interaction mediated by SOI. These results, which imply the strong coupling of electron spins with rotating lattices via the SOI, show the potential of lattice dynamics to supply spin current in strong spin orbit metals.
283 - C. Bruene 2008
We report the first electrical manipulation and detection of the mesoscopic intrinsic spin-Hall effect (ISHE) in semiconductors through non-local electrical measurement in nano-scale H-shaped structures built on high mobility HgTe/HgCdTe quantum wells. By controlling the strength of the spin-orbit splittings and the n-type to p-type transition by a top-gate, we observe a large non-local resistance signal due to the ISHE in the p-regime, of the order of kOhms, which is several orders of magnitude larger than in metals. In the n-regime, as predicted by theory, the signal is at least an order of magnitude smaller. We verify our experimental observation by quantum transport calculations which show quantitative agreement with the experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا