No Arabic abstract
In complex materials observed electronic phases and transitions between them often involves coupling between many degrees of freedom whose entanglement convolutes understanding of the instigating mechanism. Metal-insulator transitions are one such problem where coupling to the structural, orbital, charge, and magnetic order parameters frequently obscures the underlying physics. Here, we demonstrate a way to unravel this conundrum by heterostructuring a prototypical multi-ordered complex oxide NdNiO3 in ultra thin geometry, which preserves the metal-to-insulator transition and bulk-like magnetic order parameter, but entirely suppresses the symmetry lowering and charge order parameter. These findings illustrate the utility of heterointerfaces as a powerful method for removing competing order parameters to gain greater insight into the nature of the transition, here revealing that the magnetic order generates the transition independently, leading to a purely electronic Mott metal-insulator transition.
We show that the experimental evidence presented in this paper is insufficient to support its conclusions.
The collective behavior of correlated electrons in the VO$_2-$interface layer of LaVO$_3$/SrTiO$_3$ heterostructure is studied within a quarter-filled $t_{2g}$-orbital Hubbard model on a square lattice. We argue that the ground state is ferromagnetic driven by the double exchange mechanism, and is orbitally and charge ordered due to a confined geometry and electron correlations. The orbital and charge density waves open gaps on the entire Fermi surfaces of all orbitals. The theory explains the observed insulating behavior of the $p$-type interface between LaVO$_3$ and SrTiO$_3$.
By combining accurate heat capacity and X-ray resonant scattering results we have resolved the long standing question regarding the nature of the quadrupolar ordered phases in UPd_3. The order parameter of the highest temperature quadrupolar phase has been uniquely determined to be antiphase Q_{zx} in contrast to the previous conjecture of Q_{x^2-y^2} . The azimuthal dependence of the X-ray scattering intensity from the quadrupolar superlattice reflections indicates that the lower temperature phases are described by a superposition of order parameters. The heat capacity features associated with each of the phase transitions characterize their order, which imposes restrictions on the matrix elements of the quadrupolar operators.
Magnetic ordering phenomena have a profound influence on the macroscopic properties of correlated-electron materials, but their realistic prediction remains a formidable challenge. An archetypical example is the ternary nickel oxide system RNiO3 (R = rare earth), where the period-four magnetic order with proposals of collinear and non-collinear structures and the amplitude of magnetic moments on different Ni sublattices have been subjects of debate for decades. Here we introduce an elementary model system - NdNiO3 slabs embedded in a non-magnetic NdGaO3 matrix - and use polarized resonant x-ray scattering (RXS) to show that both collinear and non-collinear magnetic structures can be realized, depending on the slab thickness. The crossover between both spin structures is correctly predicted by density functional theory and can be qualitatively understood in a low-energy spin model. We further demonstrate that the amplitude ratio of magnetic moments in neighboring NiO6 octahedra can be accurately determined by RXS in combination with a correlated double cluster model. Targeted synthesis of model systems with controlled thickness and synergistic application of polarized RXS and ab-initio theory thus provide new perspectives for research on complex magnetism, in analogy to two-dimensional materials created by exfoliation.
The 4f-electron delocalization plays a key role in the low-temperature properties of rare-earth metals and intermetallics, including heavy fermions and mix-valent compounds, and is normally realized by the many-body Kondo coupling between 4f and conduction electrons. Due to the large onsite Coulomb repulsion of 4f electrons, the bandwidth-control Mott-type delocalization, commonly observed in d-electron systems, is difficult in 4f-electron systems and remains elusive in spectroscopic experiments. Here we demonstrate that the bandwidth-control orbital-selective delocalization of 4f electrons can be realized in epitaxial Ce films by thermal annealing, which results in a metastable surface phase with a reduced layer spacing. The resulting quasiparticle bands exhibit large dispersion with exclusive 4f character near E_F and extend reasonably far below the Fermi energy, which can be explained from the Mott physics. The experimental quasiparticle dispersion agrees surprisingly well with density-functional theory calculation and also exhibits unusual temperature dependence, which could be a direct consequence of the delicate interplay between the bandwidth-control Mott physics and the coexisting Kondo hybridization. Our work therefore opens up the opportunity to study the interaction between two well-known localization-delocalization mechanisms in correlation physics, i.e., Kondo vs Mott, which can be important for a fundamental understanding of 4f-electron systems.