Do you want to publish a course? Click here

Comment on Selective Interface Control of Order Parameters in Complex Oxides (arXiv:1505.07451)

105   0   0.0 ( 0 )
 Added by Bernhard Keimer
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that the experimental evidence presented in this paper is insufficient to support its conclusions.



rate research

Read More

In complex materials observed electronic phases and transitions between them often involves coupling between many degrees of freedom whose entanglement convolutes understanding of the instigating mechanism. Metal-insulator transitions are one such problem where coupling to the structural, orbital, charge, and magnetic order parameters frequently obscures the underlying physics. Here, we demonstrate a way to unravel this conundrum by heterostructuring a prototypical multi-ordered complex oxide NdNiO3 in ultra thin geometry, which preserves the metal-to-insulator transition and bulk-like magnetic order parameter, but entirely suppresses the symmetry lowering and charge order parameter. These findings illustrate the utility of heterointerfaces as a powerful method for removing competing order parameters to gain greater insight into the nature of the transition, here revealing that the magnetic order generates the transition independently, leading to a purely electronic Mott metal-insulator transition.
206 - G. Jackeli , G. Khaliullin 2008
The collective behavior of correlated electrons in the VO$_2-$interface layer of LaVO$_3$/SrTiO$_3$ heterostructure is studied within a quarter-filled $t_{2g}$-orbital Hubbard model on a square lattice. We argue that the ground state is ferromagnetic driven by the double exchange mechanism, and is orbitally and charge ordered due to a confined geometry and electron correlations. The orbital and charge density waves open gaps on the entire Fermi surfaces of all orbitals. The theory explains the observed insulating behavior of the $p$-type interface between LaVO$_3$ and SrTiO$_3$.
210 - G. Blumberg 2021
The origin of the second order phase transition at 328K in Ta$_2$NiSe$_5$, a prominent candidate for direct gap excitonic insulator, remains under fervent debate. The driving force for the transition can be revealed by identification of the soft modes origin that may be deducted from polarization resolved Raman scattering experiments. Such studies were recently reported in [arXiv:2007.07344 (2020)], [arXiv:2102.07912 (2021)], [arXiv:2007.01723 (2020)] and [arXiv:2007.08212 (2020)]. In this Comment, it is shown that the parameters derived in a recent arXiv by Kwangrae Kim et. al. [arXiv:2007.08212 (2020)], including the Weiss temperature for excitonic transition, are based on inconsistent data.
We recently reported [1,2] measurements of the charge density fluctuations in the strange metal cuprate Bi$_{2.1}$Sr$_{1.9}$Ca$_{1.0}$Cu$_{2.0}$O$_{8+x}$ using both reflection M-EELS and transmission EELS with $leq$10 meV energy resolution. We observed the well-known 1 eV plasmon in this material for momentum $qlesssim$ 0.12 r.l.u., but found that it does not persist to large $q$. For $qgtrsim0.12$ r.l.u., we observe a frequency-independent continuum, similar to that observed in early Raman scattering experiments [3,4], that correlates highly with the strange metal phase [2]. In his Comment (arXiv:2103.10268), Joerg Fink claims we do not see the plasmon, and that our results are inconsistent with optics, RIXS, and the authors own transmission EELS measurements with $sim$100 meV resolution from the early 1990s [5,6]. The author claims we have made a trigonometry error and are measuring a larger momentum than we think. The author asserts that the two-particle excitations of cuprate strange metals are accurately described by weakly interacting band theory in RPA with corrections for conduction band carrier lifetimes and Umklapp effects. Here, we show that the authors Comment is in contradiction with known information from the literature. At $qlesssim0.12$ r.l.u. we see the same 1 eV plasmon as other techniques. Moreover we compute our momentum correctly, adjusting the sample and detector angles during an energy scan to keep $q$ fixed. The only discrepancy is between our data and the results of Ref. [5] for $qgtrsim0.12$ r.l.u. where, because of the coarse resolution used, the data had to be corrected for interference from the elastic line. A reexamination of these corrections in early transmission EELS measurements would likely shed light on this discrepancy.
In a comment on arXiv:1006.5070v1, Drechsler et al. present new band-structure calculations suggesting that the frustrated ferromagnetic spin-1/2 chain LiCuVO4 should be described by a strong rather than weak ferromagnetic nearest-neighbor interaction, in contradiction with their previous calculations. In our reply, we show that their new results are at odds with the observed magnetic structure, that their analysis of the static susceptibility neglects important contributions, and that their criticism of the spin-wave analysis of the bound-state dispersion is unfounded. We further show that their new exact diagonalization results reinforce our conclusion on the existence of a four-spinon continuum in LiCuVO4, see Enderle et al., Phys. Rev. Lett. 104 (2010) 237207.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا