Do you want to publish a course? Click here

Unusual A2142 supercluster with a collapsing core: distribution of light and mass

360   0   0.0 ( 0 )
 Added by Maret Einasto
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the distribution, masses, and dynamical properties of galaxy groups in the A2142 supercluster. We analyse the global luminosity density distribution in the supercluster and divide the supercluster into the high-density core and the low-density outskirts regions. We find galaxy groups and filaments in the regions of different global density, calculate their masses and mass-to-light ratios and analyse their dynamical state with several 1D and 3D statistics. We use the spherical collapse model to study the dynamical state of the supercluster. We show that in A2142 supercluster groups and clusters with at least ten member galaxies lie along an almost straight line forming a 50 Mpc/h long main body of the supercluster. The A2142 supercluster has a very high density core surrounded by lower-density outskirt regions. The total estimated mass of the supercluster is M_est = 6.2 10^{15}M_sun. More than a half of groups with at least ten member galaxies in the supercluster lie in the high-density core of the supercluster, centered at the rich X-ray cluster A2142. Most of the galaxy groups in the core region are multimodal. In the outskirts of the supercluster, the number of groups is larger than in the core, and groups are poorer. The orientation of the cluster A2142 axis follows the orientations of its X-ray substructures and radio halo, and is aligned along the supercluster axis. The high-density core of the supercluster with the global density D8 > 17 and perhaps with D8 > 13 may have reached the turnaround radius and started to collapse. A2142 supercluster with luminous, collapsing core and straight body is an unusual object among galaxy superclusters. In the course of the future evolution the supercluster may be split into several separate systems.



rate research

Read More

117 - Maret Einasto 2020
The largest galaxy systems in the cosmic web are superclusters, overdensity regions of galaxies, groups, clusters, and filaments. Low-density regions around superclusters are called basins of attraction or cocoons. In my talk I discuss the properties of galaxies, groups, and filaments in the A2142 supercluster and its cocoon at redshift $z approx 0.09$. Cocoon boundaries are determined by the lowest density regions around the supercluster. We analyse the structure, dynamical state, connectivity, and galaxy content of the supercluster, and its high density core with the cluster A2142. We show that the main body of the supercluster is collapsing, and long filaments which surround the supercluster are detached from it. Galaxies with very old stellar populations lie not only in the central parts of clusters and groups in the supercluster, but also in the poorest groups in the cocoon.
We study the dynamical state and properties of galaxies and groups in the supercluster SClA2142 that has a collapsing core, to understand its possible formation and evolution. We find the substructure of galaxy groups using normal mixture modelling. We have used the projected phase space (PPS) diagram, spherical collapse model, clustercentric distances, and magnitude gap between the brightest galaxies in groups to study the dynamical state of groups and to analyse group and galaxy properties. We compared the alignments of groups and their brightest galaxies with the supercluster axis. The supercluster core has a radius of about $8 h^{-1}$Mpc and total mass $M_{mathrm{tot}} approx 2.3times~10^{15}h^{-1}M_odot$ and is collapsing. Galaxies in groups on the supercluster axis have older stellar populations than off-axis groups, with median stellar ages $4 - 6$ and $< 4$Gyr, correspondingly. The cluster A2142 and the group Gr8 both host galaxies with the oldest stellar populations among groups in SClA2142 having the median stellar age $t > 8$Gyr. Recently quenched galaxies and active galactic nuclei (AGNs) are mostly located at virial radii or in merging regions of groups, and at clustercentric distances $D_c approx 6 h^{-1}$ Mpc. The most elongated groups lie along the supercluster axis and are aligned with it. Magnitude gaps between the brightest galaxies of groups are less than one magnitude, suggesting that groups in SClA2142 are dynamically young. The collapsing core of the supercluster, infall of galaxies and groups, and possible merging groups, which affect galaxy properties and may trigger the activity of AGNs, show how the whole supercluster is evolving.
The formation and evolution of the cosmic web in which galaxy superclusters are the largest relatively isolated objects is governed by a gravitational attraction of dark matter and antigravity of dark energy (cosmological constant). We study the characteristic density contrasts in the spherical collapse model for several epochs in the supercluster evolution and their dynamical state. We analysed the density contrasts for the turnaround, future collapse and zero gravity in different LCDM models and applied them to study the dynamical state of the supercluster A2142 with an almost spherical main body. The analysis of the supercluster A2142 shows that its high-density core has already started to collapse. The zero-gravity line outlines the outer region of the main body of the supercluster. In the course of future evolution the supercluster may split into several collapsing systems. The various density contrasts presented in our study and applied to the supercluster A2142 offer a promising way to characterise the dynamical state and expected future evolution of galaxy superclusters.
We present a panchromatic study of luminosity functions (LFs) and stellar mass functions (SMFs) of galaxies in the core of the Shapley supercluster at z=0.048, in order to investigate how the dense environment affects the galaxy properties, such as star formation (SF) or stellar masses. We find that while faint-end slopes of optical and NIR LFs steepen with decreasing density, no environment effect is found in the slope of the SMFs. This suggests that mechanisms transforming galaxies in different environments are mainly related to the quench of SF rather than to mass-loss. The Near-UV (NUV) and Far-UV (FUV) LFs obtained have steeper faint-end slopes than the local field population, while the 24$mu$m and 70$mu$m galaxy LFs for the Shapley supercluster have shapes fully consistent with those obtained for the local field galaxy population. This apparent lack of environmental dependence for the infrared (IR) LFs suggests that the bulk of the star-forming galaxies that make up the observed cluster IR LF have been recently accreted from the field and have yet to have their SF activity significantly affected by the cluster environment.
We use extreme value statistics to assess the significance of two of the most dramatic structures in the local Universe: the Shapley supercluster and the Sloan Great Wall. If we assume that Shapley (volume ~ 1.2 x 10^5 (Mpc/h)^3) evolved from an overdense region in the initial Gaussian fluctuation field, with currently popular choices for the background cosmological model and the shape and amplitude sigma8 of the initial power spectrum, we estimate that the total mass of the system is within 20 percent of 1.8 x 10^16 Msun/h. Extreme value statistics show that the existence of this massive concentration is not unexpected if the initial fluctuation field was Gaussian, provided there are no other similar objects within a sphere of radius 200 Mpc/h centred on our Galaxy. However, a similar analysis of the Sloan Great Wall, a more distant (z ~ 0.08) and extended concentration of structures (volume ~ 7.2 x 10^5 (Mpc/h)^3) suggests that it is more unusual. We estimate its total mass to be within 20 percent of 1.2 x 10^17 Msun/h; even if it is the densest such object of its volume within z=0.2, its existence is difficult to reconcile with Gaussian initial conditions if sigma8 < 0.9. This tension can be alleviated if this structure is the densest within the Hubble volume. Finally, we show how extreme value statistics can be used to address the likelihood that an object like Shapley exists in the same volume which contains the Great Wall, finding, again, that Shapley is not particularly unusual. It is straightforward to incorporate other models of the initial fluctuation field into our formalism.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا