Do you want to publish a course? Click here

Novel $mathbb{Z}_2$-topological metals and semimetals

484   0   0.0 ( 0 )
 Added by Yuxin Zhao
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report two theoretical discoveries for $mathbb{Z}_2$-topological metals and semimetals. It is shown first that any dimensional $mathbb{Z}_2$ Fermi surface is topologically equivalent to a Fermi point. Then the famous conventional no-go theorem, which was merely proven before for $mathbb{Z}$ Fermi points in a periodic system without any discrete symmetry, is generalized to that the total topological charge is zero for all cases. Most remarkably, we find and prove an unconventional strong no-go theorem: all $mathbb{Z}_2$ Fermi points have the same topological charge $ u_{mathbb{Z}_2} =1$ or $0$ for periodic systems. Moreover, we also establish all six topological types of $mathbb{Z}_2$ models for realistic physical dimensions.



rate research

Read More

Topological phases of matter lie at the heart of physics, connecting elegant mathematical principles to real materials that are believed to shape future electronic and quantum computing technologies. To date, studies in this discipline have almost exclusively been restricted to single-gap band topology because of the Fermi-Dirac filling effect. Here, we theoretically analyze and experimentally confirm a novel class of multi-gap topological phases, which we will refer to as non-Abelian topological semimetals, on kagome geometries. These unprecedented forms of matter depend on the notion of Euler class and frame charges which arise due to non-Abelian charge conversion processes when band nodes of different gaps are braided along each other in momentum space. We identify such exotic phenomena in acoustic metamaterials and uncover a rich topological phase diagram induced by the creation, braiding and recombination of band nodes. Using pump-probe measurements, we verify the non-Abelian charge conversion processes where topological charges of nodes are transferred from one gap to another. Moreover, in such processes, we discover symmetry-enforced intermediate phases featuring triply-degenerate band nodes with unique dispersions that are directly linked to the multi-gap topological invariants. Furthermore, we confirm that edge states can faithfully characterize the multi-gap topological phase diagram. Our study unveils a new regime of topological phases where multi-gap topology and non-Abelian charges of band nodes play a crucial role in understanding semimetals with inter-connected multiple bands.
We present a many-body exact diagonalization study of the $mathbb{Z}_2$ and $mathbb{Z}_4$ Josephson effects in circuit quantum electrodynamics architectures. Numerical simulations are conducted on Kitaev chain Josephson junctions hosting nearest-neighbor Coulomb interactions. The low-energy effective theory of highly transparent Kitaev chain junctions is shown to be identical to that of junctions created at the edge of a quantum spin-Hall insulator. By capacitively coupling the interacting junction to a microwave resonator, we predict signatures of the fractional Josephson effects on the cavity frequency and on time-resolved reflectivity measurements.
Symmetry is fundamental to topological phases. In the presence of a gauge field, spatial symmetries will be projectively represented, which may alter their algebraic structure and generate novel topological phases. We show that the $mathbb{Z}_2$ projectively represented translational symmetry operators adopt a distinct commutation relation, and become momentum dependent analogous to twofold nonsymmorphic symmetries. Combined with other internal or external symmetries, they give rise to many exotic band topology, such as the degeneracy over the whole boundary of the Brillouin zone, the single fourfold Dirac point pinned at the Brillouin zone corner, and the Kramers degeneracy at every momentum point. Intriguingly, the Dirac point criticality can be lifted by breaking one primitive translation, resulting in a topological insulator phase, where the edge bands have a M{o}bius twist. Our work opens a new arena of research for exploring topological phases protected by projectively represented space groups.
Recently, a class of Dirac semimetals, such as textrm{Na}$_{mathrm{3}}% $textrm{Bi} and textrm{Cd}$_{mathrm{2}}$textrm{As}$_{mathrm{3}}$, are discovered to carry $mathbb{Z}_{2}$ monopole charges. We present an experimental mechanism to realize the $mathbb{Z}_{2}$ anomaly in regard to the $mathbb{Z}_{2}$ topological charges, and propose to probe it by magnetotransport measurement. In analogy to the chiral anomaly in a Weyl semimetal, the acceleration of electrons by a spin bias along the magnetic field can create a $mathbb{Z}_{2}$ charge imbalance between the Dirac points, the relaxation of which contributes a measurable positive longitudinal spin magnetoconductivity (LSMC) to the system. The $mathbb{Z}_{2}$ anomaly induced LSMC is a spin version of the longitudinal magnetoconductivity (LMC) due to the chiral anomaly, which possesses all characters of the chiral anomaly induced LMC. While the chiral anomaly in the topological Dirac semimetal is very sensitive to local magnetic impurities, the $mathbb{Z}_{2}$ anomaly is found to be immune to local magnetic disorder. It is further demonstrated that the quadratic or linear field dependence of the positive LMC is not unique to the chiral anomaly. Base on this, we argue that the periodic-in-$1/B$ quantum oscillations superposed on the positive LSMC can serve as a fingerprint of the $mathbb{Z}_{2}$ anomaly in topological Dirac semimetals.
Second harmonic generation (SHG) is a fundamental nonlinear optical phenomenon widely used both for experimental probes of materials and for application to optical devices. Even-order nonlinear optical responses including SHG generally require breaking of inversion symmetry, and thus have been utilized to study noncentrosymmetric materials. Here, we study theoretically the SHG in inversion-symmetric Dirac and Weyl semimetals under a DC current which breaks the inversion symmetry by creating a nonequilibrium steady state. Based on analytic and numerical calculations, we find that Dirac and Weyl semimetals exhibit strong SHG upon application of finite current. Our experimental estimation for a Dirac semimetal Cd$_3$As$_2$ and a magnetic Weyl semimetal Co$_3$Sn$_2$S$_2$ suggests that the induced susceptibility $chi^{(2)}$ for practical applied current densities can reach $10^5~mathrm{pm}cdotmathrm{V}^{-1}$ with mid-IR or far-IR light. This value is 10$^2$-10$^4$ times larger than those of typical nonlinear optical materials. We also discuss experimental approaches to observe the current-induced SHG and comment on current-induced SHG in other topological semimetals in connection with recent experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا