We present a many-body exact diagonalization study of the $mathbb{Z}_2$ and $mathbb{Z}_4$ Josephson effects in circuit quantum electrodynamics architectures. Numerical simulations are conducted on Kitaev chain Josephson junctions hosting nearest-neighbor Coulomb interactions. The low-energy effective theory of highly transparent Kitaev chain junctions is shown to be identical to that of junctions created at the edge of a quantum spin-Hall insulator. By capacitively coupling the interacting junction to a microwave resonator, we predict signatures of the fractional Josephson effects on the cavity frequency and on time-resolved reflectivity measurements.
We report two theoretical discoveries for $mathbb{Z}_2$-topological metals and semimetals. It is shown first that any dimensional $mathbb{Z}_2$ Fermi surface is topologically equivalent to a Fermi point. Then the famous conventional no-go theorem, which was merely proven before for $mathbb{Z}$ Fermi points in a periodic system without any discrete symmetry, is generalized to that the total topological charge is zero for all cases. Most remarkably, we find and prove an unconventional strong no-go theorem: all $mathbb{Z}_2$ Fermi points have the same topological charge $ u_{mathbb{Z}_2} =1$ or $0$ for periodic systems. Moreover, we also establish all six topological types of $mathbb{Z}_2$ models for realistic physical dimensions.
Recently, a class of Dirac semimetals, such as textrm{Na}$_{mathrm{3}}% $textrm{Bi} and textrm{Cd}$_{mathrm{2}}$textrm{As}$_{mathrm{3}}$, are discovered to carry $mathbb{Z}_{2}$ monopole charges. We present an experimental mechanism to realize the $mathbb{Z}_{2}$ anomaly in regard to the $mathbb{Z}_{2}$ topological charges, and propose to probe it by magnetotransport measurement. In analogy to the chiral anomaly in a Weyl semimetal, the acceleration of electrons by a spin bias along the magnetic field can create a $mathbb{Z}_{2}$ charge imbalance between the Dirac points, the relaxation of which contributes a measurable positive longitudinal spin magnetoconductivity (LSMC) to the system. The $mathbb{Z}_{2}$ anomaly induced LSMC is a spin version of the longitudinal magnetoconductivity (LMC) due to the chiral anomaly, which possesses all characters of the chiral anomaly induced LMC. While the chiral anomaly in the topological Dirac semimetal is very sensitive to local magnetic impurities, the $mathbb{Z}_{2}$ anomaly is found to be immune to local magnetic disorder. It is further demonstrated that the quadratic or linear field dependence of the positive LMC is not unique to the chiral anomaly. Base on this, we argue that the periodic-in-$1/B$ quantum oscillations superposed on the positive LSMC can serve as a fingerprint of the $mathbb{Z}_{2}$ anomaly in topological Dirac semimetals.
Symmetry is fundamental to topological phases. In the presence of a gauge field, spatial symmetries will be projectively represented, which may alter their algebraic structure and generate novel topological phases. We show that the $mathbb{Z}_2$ projectively represented translational symmetry operators adopt a distinct commutation relation, and become momentum dependent analogous to twofold nonsymmorphic symmetries. Combined with other internal or external symmetries, they give rise to many exotic band topology, such as the degeneracy over the whole boundary of the Brillouin zone, the single fourfold Dirac point pinned at the Brillouin zone corner, and the Kramers degeneracy at every momentum point. Intriguingly, the Dirac point criticality can be lifted by breaking one primitive translation, resulting in a topological insulator phase, where the edge bands have a M{o}bius twist. Our work opens a new arena of research for exploring topological phases protected by projectively represented space groups.
For a positive integer $g$, let $mathrm{Sp}_{2g}(R)$ denote the group of $2g times 2g$ symplectic matrices over a ring $R$. Assume $g ge 2$. For a prime number $ell$, we give a self-contained proof that any closed subgroup of $mathrm{Sp}_{2g}(mathbb{Z}_ell)$ which surjects onto $mathrm{Sp}_{2g}(mathbb{Z}/ellmathbb{Z})$ must in fact equal all of $mathrm{Sp}_{2g}(mathbb{Z}_ell)$. The result and the method of proof are both motivated by group-theoretic considerations that arise in the study of Galois representations associated to abelian varieties.
$mathbb{Z}_4$ parafermions can be realized in a strongly interacting quantum spin Hall Josephson junction or in a spin Hall Josephson junction strongly coupled to an impurity spin. In this paper we study a system that has both features, but with weak (repulsive) interactions and a weakly coupled spin. We show that for a strongly anisotropic exchange interaction, at low temperatures the system enters a strong coupling limit in which it hosts two $mathbb{Z}_4$ parafermions, characterizing a fourfold degeneracy of the ground state. We construct the parafermion operators explicitly, and show that they facilitate fractional $e/2$ charge tunneling across the junction. The dependence of the effective low-energy spectrum on the superconducting phase difference reveals an $8pi$ periodicity of the supercurrent.
Pedro L. S. Lopes
,Samuel Boutin
,Philippe Karan
.
(2018)
.
"Microwave signatures of $mathbb{Z}_{2}$ and $mathbb{Z}_{4}$ fractional Josephson effects"
.
Pedro Lopes Dr.
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا