No Arabic abstract
Time-of-flight, i.e., the time incurred by a signal to travel from transmitter to receiver, is perhaps the most intuitive way to measure distances using wireless signals. It is used in major positioning systems such as GPS, RADAR, and SONAR. However, attempts at using time-of-flight for indoor localization have failed to deliver acceptable accuracy due to fundamental limitations in measuring time on Wi-Fi and other RF consumer technologies. While the research community has developed alternatives for RF-based indoor localization that do not require time-of-flight, those approaches have their own limitations that hamper their use in practice. In particular, many existing approaches need receivers with large antenna arrays while commercial Wi-Fi nodes have two or three antennas. Other systems require fingerprinting the environment to create signal maps. More fundamentally, none of these methods support indoor positioning between a pair of Wi-Fi devices without~third~party~support. In this paper, we present a set of algorithms that measure the time-of-flight to sub-nanosecond accuracy on commercial Wi-Fi cards. We implement these algorithms and demonstrate a system that achieves accurate device-to-device localization, i.e. enables a pair of Wi-Fi devices to locate each other without any support from the infrastructure, not even the location of the access points.
We unveil the existence of a vulnerability in Wi-Fi, which allows an adversary to remotely launch a Denial-of-Service (DoS) attack that propagates both in time and space. This vulnerability stems from a coupling effect induced by hidden nodes. Cascading DoS attacks can congest an entire network and do not require the adversary to violate any protocol. We demonstrate the feasibility of such attacks through experiments with real Wi-Fi cards, extensive ns-3 simulations, and theoretical analysis. The simulations show that the attack is effective both in networks operating under fixed and varying bit rates, as well as ad hoc and infrastructure modes. To gain insight into the root-causes of the attack, we model the network as a dynamical system and analyze its limiting behavior. The model predicts that a phase transition (and hence a cascading attack) is possible when the retry limit parameter of Wi-Fi is greater or equal to 7, and explicitly characterizes the phase transition region in terms of the system parameters.
In 2019 IEEE 802 LAN/MAN Standards Committee started the development of the next major amendment of the Wi-Fi standard: the IEEE 802.11be, also known as Wi-Fi 7. This new amendment will introduce many new functions and will improve the existing ones that will make Wi-Fi more efficient in many new scenarios. One of the scenarios is the service of Real-Time Applications with strict requirements on latency and reliability of communications. Providing low latencies can be challenging in Wi-Fi because of the unlicensed spectrum and related interference from neighboring devices. In this paper, we consider the usage of OFDMA transmissions for Real-Time Applications and design resource allocation algorithms that can provide the required latency and reliability in the presence of interference.
We show experimentally that workload-based AP-STA associations can improve system throughput significantly. We present a predictive model that guides optimal resource allocations in dense Wi-Fi networks and achieves 72-77% of the optimal throughput with varying training data set sizes using a 3-day trace of real cable modem traffic.
Wi-Fi is among the most successful wireless technologies ever invented. As Wi-Fi becomes more and more present in public and private spaces, it becomes natural to leverage its ubiquitousness to implement groundbreaking wireless sensing applications such as human presence detection, activity recognition, and object tracking, just to name a few. This paper reports ongoing efforts by the IEEE 802.11bf Task Group (TGbf), which is defining the appropriate modifications to existing Wi-Fi standards to enhance sensing capabilities through 802.11-compliant waveforms. We summarize objectives and timeline of TGbf, and discuss some of the most interesting proposed technical features discussed so far. We also introduce a roadmap of research challenges pertaining to Wi-Fi sensing and its integration with future Wi-Fi technologies and emerging spectrum bands, hoping to elicit further activities by both the research community and TGbf.
Real-Time Applications (RTA) are among the most important use cases for future Wi-Fi 7, defined by the IEEE 802.11be standard. This paper studies two backward-compatible channel access approaches to satisfy the strict quality of service (QoS) requirements of RTA on the transmission latency and packet loss rate that have been considered in the 802.11be Task Group. The first approach is based on limiting the transmission duration of non-RTA frames in the network. The second approach is based on preliminary channel access to ensure the timely delivery of RTA frames. With the developed mathematical model of these approaches, it is shown that both of them can satisfy the RTA QoS requirements. At the same time, the preliminary channel access provides up to 60% higher efficiency of the channel usage by the non-RTA traffic in scenarios with very strict RTA QoS requirements or with low intensity of the RTA traffic.