Do you want to publish a course? Click here

Resource Allocation Strategies for Real-Time Applications in Wi-Fi 7

121   0   0.0 ( 0 )
 Added by Dmitry Bankov
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In 2019 IEEE 802 LAN/MAN Standards Committee started the development of the next major amendment of the Wi-Fi standard: the IEEE 802.11be, also known as Wi-Fi 7. This new amendment will introduce many new functions and will improve the existing ones that will make Wi-Fi more efficient in many new scenarios. One of the scenarios is the service of Real-Time Applications with strict requirements on latency and reliability of communications. Providing low latencies can be challenging in Wi-Fi because of the unlicensed spectrum and related interference from neighboring devices. In this paper, we consider the usage of OFDMA transmissions for Real-Time Applications and design resource allocation algorithms that can provide the required latency and reliability in the presence of interference.



rate research

Read More

Real-Time Applications (RTA) are among the most important use cases for future Wi-Fi 7, defined by the IEEE 802.11be standard. This paper studies two backward-compatible channel access approaches to satisfy the strict quality of service (QoS) requirements of RTA on the transmission latency and packet loss rate that have been considered in the 802.11be Task Group. The first approach is based on limiting the transmission duration of non-RTA frames in the network. The second approach is based on preliminary channel access to ensure the timely delivery of RTA frames. With the developed mathematical model of these approaches, it is shown that both of them can satisfy the RTA QoS requirements. At the same time, the preliminary channel access provides up to 60% higher efficiency of the channel usage by the non-RTA traffic in scenarios with very strict RTA QoS requirements or with low intensity of the RTA traffic.
Support of real-time applications that impose strict requirements on packet loss ratio and latency is an essential feature of the next generation Wi-Fi networks. Initially introduced in the 802.11ax amendment to the Wi-Fi standard, uplink OFDMA seems to be a promising solution for supported low-latency data transmission from the numerous stations to an access point. In this paper, we study how to allocate OFDMA resources in an 802.11ax network and propose an algorithm aimed at providing the delay less than one millisecond and reliability up to 99.999% as required by numerous real-time applications. We design a resource allocation algorithm and with extensive simulation, show that it decreases delays for real-time traffic by orders of magnitude, while the throughput for non-real-time traffic is reduced insignificantly.
The performance of computer networks relies on how bandwidth is shared among different flows. Fair resource allocation is a challenging problem particularly when the flows evolve over time.To address this issue, bandwidth sharing techniques that quickly react to the traffic fluctuations are of interest, especially in large scale settings with hundreds of nodes and thousands of flows. In this context, we propose a distributed algorithm that tackles the fair resource allocation problem in a distributed SDN control architecture. Our algorithm continuously generates a sequence of resource allocation solutions converging to the fair allocation while always remaining feasible, a property that standard primal-dual decomposition methods often lack. Thanks to the distribution of all computer intensive operations, we demonstrate that we can handle large instances in real-time.
Time-of-flight, i.e., the time incurred by a signal to travel from transmitter to receiver, is perhaps the most intuitive way to measure distances using wireless signals. It is used in major positioning systems such as GPS, RADAR, and SONAR. However, attempts at using time-of-flight for indoor localization have failed to deliver acceptable accuracy due to fundamental limitations in measuring time on Wi-Fi and other RF consumer technologies. While the research community has developed alternatives for RF-based indoor localization that do not require time-of-flight, those approaches have their own limitations that hamper their use in practice. In particular, many existing approaches need receivers with large antenna arrays while commercial Wi-Fi nodes have two or three antennas. Other systems require fingerprinting the environment to create signal maps. More fundamentally, none of these methods support indoor positioning between a pair of Wi-Fi devices without~third~party~support. In this paper, we present a set of algorithms that measure the time-of-flight to sub-nanosecond accuracy on commercial Wi-Fi cards. We implement these algorithms and demonstrate a system that achieves accurate device-to-device localization, i.e. enables a pair of Wi-Fi devices to locate each other without any support from the infrastructure, not even the location of the access points.
Ultra Reliable Low Latency Communications (URLLC) is an important challenge for the next generation wireless networks, which poses very strict requirements to the delay and packet loss ratio. Satisfaction is hardly possible without introducing additional functionality to the existing communication technologies. In the paper, we propose and study an approach to enable URLLC in Wi-Fi networks by exploiting an additional radio similar to that of IEEE 802.11ba. With extensive simulation, we show that our approach allows decreasing the delay by orders of magnitude, while the throughput of non-URLLC devices is reduced insignificantly.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا