Do you want to publish a course? Click here

Removing Camera Shake via Weighted Fourier Burst Accumulation

104   0   0.0 ( 0 )
 Added by Mauricio Delbracio
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

Numerous recent approaches attempt to remove image blur due to camera shake, either with one or multiple input images, by explicitly solving an inverse and inherently ill-posed deconvolution problem. If the photographer takes a burst of images, a modality available in virtually all modern digital cameras, we show that it is possible to combine them to get a clean sharp version. This is done without explicitly solving any blur estimation and subsequent inverse problem. The proposed algorithm is strikingly simple: it performs a weighted average in the Fourier domain, with weights depending on the Fourier spectrum magnitude. The method can be seen as a generalization of the align and average procedure, with a weighted average, motivated by hand-shake physiology and theoretically supported, taking place in the Fourier domain. The methods rationale is that camera shake has a random nature and therefore each image in the burst is generally blurred differently. Experiments with real camera data, and extensive comparisons, show that the proposed Fourier Burst Accumulation (FBA) algorithm achieves state-of-the-art results an order of magnitude faster, with simplicity for on-board implementation on camera phones. Finally, we also present experiments in real high dynamic range (HDR) scenes, showing how the method can be straightforwardly extended to HDR photography.



rate research

Read More

Recent development of Under-Display Camera (UDC) systems provides a true bezel-less and notch-free viewing experience on smartphones (and TV, laptops, tablets), while allowing images to be captured from the selfie camera embedded underneath. In a typical UDC system, the microstructure of the semi-transparent organic light-emitting diode (OLED) pixel array attenuates and diffracts the incident light on the camera, resulting in significant image quality degradation. Oftentimes, noise, flare, haze, and blur can be observed in UDC images. In this work, we aim to analyze and tackle the aforementioned degradation problems. We define a physics-based image formation model to better understand the degradation. In addition, we utilize one of the worlds first commodity UDC smartphone prototypes to measure the real-world Point Spread Function (PSF) of the UDC system, and provide a model-based data synthesis pipeline to generate realistically degraded images. We specially design a new domain knowledge-enabled Dynamic Skip Connection Network (DISCNet) to restore the UDC images. We demonstrate the effectiveness of our method through extensive experiments on both synthetic and real UDC data. Our physics-based image formation model and proposed DISCNet can provide foundations for further exploration in UDC image restoration, and even for general diffraction artifact removal in a broader sense.
Camera localization aims to estimate 6 DoF camera poses from RGB images. Traditional methods detect and match interest points between a query image and a pre-built 3D model. Recent learning-based approaches encode scene structures into a specific convolutional neural network (CNN) and thus are able to predict dense coordinates from RGB images. However, most of them require re-training or re-adaption for a new scene and have difficulties in handling large-scale scenes due to limited network capacity. We present a new method for scene agnostic camera localization using dense scene matching (DSM), where a cost volume is constructed between a query image and a scene. The cost volume and the corresponding coordinates are processed by a CNN to predict dense coordinates. Camera poses can then be solved by PnP algorithms. In addition, our method can be extended to temporal domain, which leads to extra performance boost during testing time. Our scene-agnostic approach achieves comparable accuracy as the existing scene-specific approaches, such as KFNet, on the 7scenes and Cambridge benchmark. This approach also remarkably outperforms state-of-the-art scene-agnostic dense coordinate regression network SANet. The Code is available at https://github.com/Tangshitao/Dense-Scene-Matching.
112 - Yen Do , Michael Lacey 2012
For 1<p<infty and for weight w in A_p, we show that the r-variation of the Fourier sums of any function in L^p(w) is finite a.e. for r larger than a finite constant depending on w and p. The fact that the variation exponent depends on w is necessary. This strengthens previous work of Hunt-Young and is a weighted extension of a variational Carleson theorem of Oberlin-Seeger-Tao-Thiele-Wright. The proof uses weighted adaptation of phase plane analysis and a weighted extension of a variational inequality of Lepingle.
Videos captured with hand-held cameras often suffer from a significant amount of blur, mainly caused by the inevitable natural tremor of the photographers hand. In this work, we present an algorithm that removes blur due to camera shake by combining information in the Fourier domain from nearby frames in a video. The dynamic nature of typical videos with the presence of multiple moving objects and occlusions makes this problem of camera shake removal extremely challenging, in particular when low complexity is needed. Given an input video frame, we first create a consistent registered version of temporally adjacent frames. Then, the set of consistently registered frames is block-wise fused in the Fourier domain with weights depending on the Fourier spectrum magnitude. The method is motivated from the physiological fact that camera shake blur has a random nature and therefore, nearby video frames are generally blurred differently. Experiments with numerous videos recorded in the wild, along with extensive comparisons, show that the proposed algorithm achieves state-of-the-art results while at the same time being much faster than its competitors.
Generalizing deep neural networks to new target domains is critical to their real-world utility. In practice, it may be feasible to get some target data labeled, but to be cost-effective it is desirable to select a maximally-informative subset via active learning (AL). We study the problem of AL under a domain shift, called Active Domain Adaptation (Active DA). We empirically demonstrate how existing AL approaches based solely on model uncertainty or diversity sampling are suboptimal for Active DA. Our algorithm, Active Domain Adaptation via Clustering Uncertainty-weighted Embeddings (ADA-CLUE), i) identifies target instances for labeling that are both uncertain under the model and diverse in feature space, and ii) leverages the available source and target data for adaptation by optimizing a semi-supervised adversarial entropy loss that is complementary to our active sampling objective. On standard image classification-based domain adaptation benchmarks, ADA-CLUE consistently outperforms competing active adaptation, active learning, and domain adaptation methods across domain shifts of varying severity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا