Do you want to publish a course? Click here

Event-by-event fluctuations in perturbative QCD + saturation + hydro model: pinning down QCD matter shear viscosity in ultrarelativistic heavy-ion collisions

167   0   0.0 ( 0 )
 Added by Harri Niemi
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We introduce an event-by-event perturbative-QCD + saturation + hydro (EKRT) framework for ultrarelativistic heavy-ion collisions, where we compute the produced fluctuating QCD-matter energy densities from next-to-leading order perturbative QCD using a saturation conjecture to control soft particle production, and describe the space-time evolution of the QCD matter with dissipative fluid dynamics, event by event. We perform a simultaneous comparison of the centrality dependence of hadronic multiplicities, transverse momentum spectra, and flow coefficients of the azimuth-angle asymmetries, against the LHC and RHIC measurements. We compare also the computed event-by-event probability distributions of relative fluctuations of elliptic flow, and event-plane angle correlations, with the experimental data from Pb+Pb collisions at the LHC. We show how such a systematic multi-energy and multi-observable analysis tests the initial state calculation and the applicability region of hydrodynamics, and in particular how it constrains the temperature dependence of the shear viscosity-to-entropy ratio of QCD matter in its different phases in a remarkably consistent manner.



rate research

Read More

We introduce an event-by-event pQCD + saturation + hydro (EKRT) framework for high-energy heavy-ion collisions, where we compute the produced fluctuating QCD-matter energy densities from next-to-leading order (NLO) perturbative QCD (pQCD) using saturation to control soft particle production, and describe the space-time evolution of the QCD matter with viscous hydrodynamics, event by event (EbyE). We compare the computed centrality dependence of hadronic multiplicities, p_T spectra and flow coefficients v_n against LHC and RHIC data. We compare also the computed EbyE probability distributions of relative fluctuations of v_n, as well as correlations of 2 and 3 event-plane angles, with LHC data. Our systematic multi-energy and -observable analysis not only tests the initial state calculation and applicability of hydrodynamics, but also makes it possible to constrain the temperature dependence of the shear viscosity-to-entropy ratio, eta/s(T), of QCD matter in its different phases. Remarkably, we can describe all these different flow observables and correlations consistently with eta/s(T) that is independent of the collision energy.
We compute the initial energy densities produced in ultrarelativistic heavy-ion collisions from NLO perturbative QCD using a saturation conjecture to control soft particle production, and describe the subsequent space-time evolution of the system with hydrodynamics, event by event. The resulting centrality dependence of the low-$p_T$ observables from this pQCD + saturation + hydro (EKRT) framework are then compared simultaneously to the LHC and RHIC measurements. With such an analysis we can test the initial state calculation, and constrain the temperature dependence of the shear viscosity-to-entropy ratio $eta/s$ of QCD matter. Using these constraints from the current RHIC and LHC measurements we then predict the charged hadron multiplicities and flow coefficients for the 5.023 TeV Pb+Pb collisions.
The event-by-event fluctuations of suitably chosen observables in heavy ion collisions at SPS, RHIC and LHC can tell us about the thermodynamic properties of the hadronic system at freeze-out. By studying these fluctuations as a function of varying control parameters, it is possible to learn much about the phase diagram of QCD. As a timely example, we stress the methods by which present experiments at the CERN SPS can locate the second-order critical endpoint of the first-order transition between quark-gluon plasma and hadron matter. Those event-by-event signatures which are characteristic of freeze-out in the vicinity of the critical point will exhibit nonmonotonic dependence on control parameters. We focus on observables constructed from the multiplicity and transverse momenta of charged pions. We first consider how the event-by-event fluctuations of such observables are affected by Bose-Einstein correlations, by resonances which decay after freeze-out and by fluctuations in the transverse flow velocity. We compare our thermodynamic predictions for such noncritical event-by-event fluctuations with NA49 data, finding broad agreement. We then focus on effects due to thermal contact between the observed pions and a heat bath with a given (possibly singular) specific heat, and due to the direct coupling between the critical fluctuations of the sigma field and the observed pions. We also discuss the effect of the pions produced in the decay of sigma particles just above threshold after freeze-out on the inclusive pion spectrum and on multiplicity fluctuations. We estimate the size of these nonmonotonic effects which appear near the critical point, including restrictions imposed by finite size and finite time, and conclude that they should be easily observable.
The LHC data on event-by-event harmonic flow coefficients measured in PbPb collisions at center-of-mass energy 2.76 TeV per nucleon pair are analyzed and interpreted within the HYDJET++ model. To compare the model results with the experimental data the unfolding procedure is employed. The essentially dynamical origin of the flow fluctuations in hydro-inspired freeze-out approach has been established. It is shown that the simple modification of the model via introducing the distribution over spatial anisotropy parameters permits HYDJET++ to reproduce both elliptic and triangular flow fluctuations and related to it eccentricity fluctuations of the initial state at the LHC energy.
167 - Krzysztof Redlich 2012
We argue that by measuring higher moments of the net proton number fluctuations in heavy ion collisions (HIC) one can probe the QCD chiral cross over transition experimentally. We discuss the properties of fluctuations of the net baryon number in the vicinity of the chiral crossover transition within the Polyakov loop extended quark-meson model at finite temperature and baryon density. The calculation includes non-perturbative dynamics implemented within the functional renormalization group approach. We find a clear signal for the chiral crossover transition in the fluctuations of the net baryon number. We address our theoretical findings to experimental data of STAR Collaboration on energy and centrality dependence of the net proton number fluctuations and their probability distributions in HIC.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا