Do you want to publish a course? Click here

Event-by-Event Fluctuations in Heavy Ion Collisions and the QCD Critical Point

153   0   0.0 ( 0 )
 Added by Misha Stephanov
 Publication date 1999
  fields
and research's language is English




Ask ChatGPT about the research

The event-by-event fluctuations of suitably chosen observables in heavy ion collisions at SPS, RHIC and LHC can tell us about the thermodynamic properties of the hadronic system at freeze-out. By studying these fluctuations as a function of varying control parameters, it is possible to learn much about the phase diagram of QCD. As a timely example, we stress the methods by which present experiments at the CERN SPS can locate the second-order critical endpoint of the first-order transition between quark-gluon plasma and hadron matter. Those event-by-event signatures which are characteristic of freeze-out in the vicinity of the critical point will exhibit nonmonotonic dependence on control parameters. We focus on observables constructed from the multiplicity and transverse momenta of charged pions. We first consider how the event-by-event fluctuations of such observables are affected by Bose-Einstein correlations, by resonances which decay after freeze-out and by fluctuations in the transverse flow velocity. We compare our thermodynamic predictions for such noncritical event-by-event fluctuations with NA49 data, finding broad agreement. We then focus on effects due to thermal contact between the observed pions and a heat bath with a given (possibly singular) specific heat, and due to the direct coupling between the critical fluctuations of the sigma field and the observed pions. We also discuss the effect of the pions produced in the decay of sigma particles just above threshold after freeze-out on the inclusive pion spectrum and on multiplicity fluctuations. We estimate the size of these nonmonotonic effects which appear near the critical point, including restrictions imposed by finite size and finite time, and conclude that they should be easily observable.



rate research

Read More

We introduce an event-by-event perturbative-QCD + saturation + hydro (EKRT) framework for ultrarelativistic heavy-ion collisions, where we compute the produced fluctuating QCD-matter energy densities from next-to-leading order perturbative QCD using a saturation conjecture to control soft particle production, and describe the space-time evolution of the QCD matter with dissipative fluid dynamics, event by event. We perform a simultaneous comparison of the centrality dependence of hadronic multiplicities, transverse momentum spectra, and flow coefficients of the azimuth-angle asymmetries, against the LHC and RHIC measurements. We compare also the computed event-by-event probability distributions of relative fluctuations of elliptic flow, and event-plane angle correlations, with the experimental data from Pb+Pb collisions at the LHC. We show how such a systematic multi-energy and multi-observable analysis tests the initial state calculation and the applicability region of hydrodynamics, and in particular how it constrains the temperature dependence of the shear viscosity-to-entropy ratio of QCD matter in its different phases in a remarkably consistent manner.
By analyzing the available data on strange hadrons in central Pb+Pb collisions from the NA49 Collaboration at the Super Proton Synchrotron (SPS) and in central Au+Au collisions from the STAR Collaboration at the Relativistic Heavy-Ion Collider (RHIC) in a wide collision energy range from $sqrt{s_{rm NN}}$ = 6.3 GeV to 200 GeV, we find a possible non-monotonic behavior in the ratio $mathcal{O}_text{K-$Xi$-$phi$-$Lambda$}$= $frac{N(K^+)N(Xi^-)}{N(phi)N(Lambda)}$ of $K^+$, $Xi^-$, $phi$, and $Lambda$ yields as a function of $sqrt{s_{rm NN}}$. Based on the quark coalescence model, which can take into account the effect of quark density fluctuations on hadron production, a possible non-monotonic behavior in the dependence of the strange quark density fluctuation on $sqrt{s_{NN}}$ is obtained. This is in contrast to the coalescence model that does not include quark density fluctuations and also to the statistical hadronization model as both fail to describe even qualitatively the collision energy dependence of the ratio $mathcal{O}_text{K-$Xi$-$phi$-$Lambda$}$. Our findings thus suggest that the signal and location of a possible critical endpoint in the QCD phase diagram, which is expected to result in large quark density fluctuations, can be found in the on-going Bean Energy Scan program at RHIC.
We study clustering of baryons at the freeze-out point of relativistic heavy-ion collisions. Using a Walecka-Serot model for the nucleon-nucleon (NN) interaction we analyze how the modified/critical $sigma$ mode---responsible for the NN attraction---allows for clustering of nucleons when the system is close to a possible critical point of QCD. We investigate clusters of few nucleons, and also the internal cluster configuration when the system is long lived. For realistic heavy-ion collisions we study to how extend such clusters can be formed in a finite time, and perform the statistical analysis of cumulants and higher-order moments (skewness and kurtosis) for collisions at the Beam Energy Scan of RHIC.
150 - R.B. Neufeld , I. Vitev 2012
Tagged jet measurements provide a promising experimental channel to quantify the similarities and differences in the mechanisms of jet production in proton-proton and nucleus-nucleus collisions. We present the first calculation of the transverse momentum asymmetry of Z^0/gamma^*-tagged jet events in sqrt{s}=2.76$ TeV reactions at the LHC. Our results combine the O(G_Falpha_s^2) perturbative cross sections with the radiative and collisional processes that modify parton showers in the presence of dense QCD matter. We find that a strong asymmetry is generated in central lead-lead reactions that has little sensitivity to the fluctuations of the underlying soft hadronic background. We present theoretical model predictions for its shape and magnitude.
In a noncentral heavy-ion collision, the two colliding nuclei have finite angular momentum in the direction perpendicular to the reaction plane. After the collision, a fraction of the total angular momentum is retained in the produced hot quark-gluon matter and is manifested in the form of fluid shear. Such fluid shear creates finite flow vorticity. We study some features of such generated vorticity, including its strength, beam energy dependence, centrality dependence, and spatial distribution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا