Do you want to publish a course? Click here

Probing QCD chiral cross over transition in heavy ion collisions with fluctuations

133   0   0.0 ( 0 )
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We argue that by measuring higher moments of the net proton number fluctuations in heavy ion collisions (HIC) one can probe the QCD chiral cross over transition experimentally. We discuss the properties of fluctuations of the net baryon number in the vicinity of the chiral crossover transition within the Polyakov loop extended quark-meson model at finite temperature and baryon density. The calculation includes non-perturbative dynamics implemented within the functional renormalization group approach. We find a clear signal for the chiral crossover transition in the fluctuations of the net baryon number. We address our theoretical findings to experimental data of STAR Collaboration on energy and centrality dependence of the net proton number fluctuations and their probability distributions in HIC.

rate research

Read More

By analyzing the available data on strange hadrons in central Pb+Pb collisions from the NA49 Collaboration at the Super Proton Synchrotron (SPS) and in central Au+Au collisions from the STAR Collaboration at the Relativistic Heavy-Ion Collider (RHIC) in a wide collision energy range from $sqrt{s_{rm NN}}$ = 6.3 GeV to 200 GeV, we find a possible non-monotonic behavior in the ratio $mathcal{O}_text{K-$Xi$-$phi$-$Lambda$}$= $frac{N(K^+)N(Xi^-)}{N(phi)N(Lambda)}$ of $K^+$, $Xi^-$, $phi$, and $Lambda$ yields as a function of $sqrt{s_{rm NN}}$. Based on the quark coalescence model, which can take into account the effect of quark density fluctuations on hadron production, a possible non-monotonic behavior in the dependence of the strange quark density fluctuation on $sqrt{s_{NN}}$ is obtained. This is in contrast to the coalescence model that does not include quark density fluctuations and also to the statistical hadronization model as both fail to describe even qualitatively the collision energy dependence of the ratio $mathcal{O}_text{K-$Xi$-$phi$-$Lambda$}$. Our findings thus suggest that the signal and location of a possible critical endpoint in the QCD phase diagram, which is expected to result in large quark density fluctuations, can be found in the on-going Bean Energy Scan program at RHIC.
Working in the linear sigma model with quarks, we compute the finite-temperature effective potential in the presence of a weak magnetic field, including the contribution of the pion ring diagrams and considering the sigma as a classical field. In the approximation where the pion self-energy is computed perturbatively, we show that there is a region of the parameter space where the effect of the ring diagrams is to preclude the phase transition from happening. Inclusion of the magnetic field has small effects that however become more important as the system evolves to the lowest temperatures allowed in the analysis.
We review a recently proposed phenomenological framework to establish the notions of QCD factorization and universality of jet cross sections in the heavy-ion environment. First results of a global analysis of the nuclear modification factor of inclusive jets are presented where we extract medium modified jet functions using a Monte Carlo sampling approach. We observe that gluon jets are significantly more suppressed than quark jets. In addition, we study the jet radius dependence of the inclusive jet cross section in heavy-ion collisions and comment on a recent measurement from CMS. By considering for example jet substructure observables it will be possible to test the universality of the extracted medium jet functions. We thus expect that the presented results will eventually allow for extractions of medium properties with a reduced model bias.
We introduce an event-by-event perturbative-QCD + saturation + hydro (EKRT) framework for ultrarelativistic heavy-ion collisions, where we compute the produced fluctuating QCD-matter energy densities from next-to-leading order perturbative QCD using a saturation conjecture to control soft particle production, and describe the space-time evolution of the QCD matter with dissipative fluid dynamics, event by event. We perform a simultaneous comparison of the centrality dependence of hadronic multiplicities, transverse momentum spectra, and flow coefficients of the azimuth-angle asymmetries, against the LHC and RHIC measurements. We compare also the computed event-by-event probability distributions of relative fluctuations of elliptic flow, and event-plane angle correlations, with the experimental data from Pb+Pb collisions at the LHC. We show how such a systematic multi-energy and multi-observable analysis tests the initial state calculation and the applicability region of hydrodynamics, and in particular how it constrains the temperature dependence of the shear viscosity-to-entropy ratio of QCD matter in its different phases in a remarkably consistent manner.
The event-by-event fluctuations of suitably chosen observables in heavy ion collisions at SPS, RHIC and LHC can tell us about the thermodynamic properties of the hadronic system at freeze-out. By studying these fluctuations as a function of varying control parameters, it is possible to learn much about the phase diagram of QCD. As a timely example, we stress the methods by which present experiments at the CERN SPS can locate the second-order critical endpoint of the first-order transition between quark-gluon plasma and hadron matter. Those event-by-event signatures which are characteristic of freeze-out in the vicinity of the critical point will exhibit nonmonotonic dependence on control parameters. We focus on observables constructed from the multiplicity and transverse momenta of charged pions. We first consider how the event-by-event fluctuations of such observables are affected by Bose-Einstein correlations, by resonances which decay after freeze-out and by fluctuations in the transverse flow velocity. We compare our thermodynamic predictions for such noncritical event-by-event fluctuations with NA49 data, finding broad agreement. We then focus on effects due to thermal contact between the observed pions and a heat bath with a given (possibly singular) specific heat, and due to the direct coupling between the critical fluctuations of the sigma field and the observed pions. We also discuss the effect of the pions produced in the decay of sigma particles just above threshold after freeze-out on the inclusive pion spectrum and on multiplicity fluctuations. We estimate the size of these nonmonotonic effects which appear near the critical point, including restrictions imposed by finite size and finite time, and conclude that they should be easily observable.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا