Do you want to publish a course? Click here

Slow electrons from clusters in strong Xray pulses

297   0   0.0 ( 0 )
 Added by Ulf Saalmann
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Electrons released from clusters through strong Xray pulses show broad kinetic-energy spectra, extending from the atomic excess energy down to the threshold, where usually a strong peak appears. These low-energy electrons are normally attributed to evaporation from the nano-plasma formed in the highly-charged clusters. Here, it is shown that also directly emitted photo electrons generate a pronounced spectral feature close to threshold. Furthermore, we give an analytical approximation for the direct photo-electron spectrum.



rate research

Read More

Energy absorption of xenon clusters embedded in helium nanodroplets from strong femtosecond laser pulses is studied theoretically. Compared to pure clusters we find earlier and more efficient energy absorption in agreement with experiments. This effect is due to resonant absorption of the helium nanoplasma whose formation is catalyzed by the xenon core. For very short double pulses with variable delay both plasma resonances, due to the helium shell and the xenon core, are identified and the experimental conditions are given which should allow for a simultaneous observation of both of them.
We discuss the temporal picture of electron collisions with fullerene. Within the framework of a Dirac bubble potential model for the fullerene shell, we calculate the time delay in slow-electron elastic scattering by it. It appeared that the time of transmission of an electron wave packet through the Dirac bubble potential sphere that simulates a real potential of the C60 reaches up to 104 attoseconds. Resonances in the time delays are due to the temporary trapping of electron into quasi-bound states before it leaves the interaction region. As concrete targets we choose almost ideally spherical endohedrals C20, C60, C72, and C80. We present dependences of time-delay upon collision energy.
145 - B. Ziaja , H. Wabnitz , F. Wang 2008
Kinetic Boltzmann equations are used to model the ionization and expansion dynamics of xenon clusters irradiated with short intense VUV pulses. This unified model includes predominant interactions that contribute to the cluster dynamics induced by this radiation. The dependence of the evolution dynamics on cluster size, $N_{atoms}=20-90000$, and pulse fluence, $F=0.05-1.5$ J/cm$^2$, corresponding to intensities in the range, $10^{12}-10^{14}$ W/cm$^2$ and irradiation times, $leq 50$ fs, is investigated. The predictions obtained with our model are found to be in good agreement with the experimental data. We find that during the exposure the cluster forms a shell structure consisting of a positively charged outer shell and a core of net charge equal to zero. The width of these shells depends on the cluster size. The charged outer shell is large within small clusters ($N_{atoms}=20,70$), and its Coulomb explosion drives the expansion of these clusters. Within the large clusters ($N_{atoms}=2500,90000$) the neutral core is large, and after the Coulomb explosion of the outer shell it expands hydrodynamically. Highly charged ions within the core recombine efficiently with electrons. As a result, we observe a large fraction of neutral atoms created within the core, its magnitude depending on the cluster size.
A relation $mathcal{M}_{mathrm{SHS}tomathrm{LJ}}$ between the set of non-isomorphic sticky hard sphere clusters $mathcal{M}_mathrm{SHS}$ and the sets of local energy minima $mathcal{M}_{LJ}$ of the $(m,n)$-Lennard-Jones potential $V^mathrm{LJ}_{mn}(r) = frac{varepsilon}{n-m} [ m r^{-n} - n r^{-m} ]$ is established. The number of nonisomorphic stable clusters depends strongly and nontrivially on both $m$ and $n$, and increases exponentially with increasing cluster size $N$ for $N gtrsim 10$. While the map from $mathcal{M}_mathrm{SHS}to mathcal{M}_{mathrm{SHS}tomathrm{LJ}}$ is non-injective and non-surjective, the number of Lennard-Jones structures missing from the map is relatively small for cluster sizes up to $N=13$, and most of the missing structures correspond to energetically unfavourable minima even for fairly low $(m,n)$. Furthermore, even the softest Lennard-Jones potential predicts that the coordination of 13 spheres around a central sphere is problematic (the Gregory-Newton problem). A more realistic extended Lennard-Jones potential chosen from coupled-cluster calculations for a rare gas dimer leads to a substantial increase in the number of nonisomorphic clusters, even though the potential curve is very similar to a (6,12)-Lennard-Jones potential.
137 - M. Georgiev , H. Chamati 2018
We investigate the role of exchange bridges in molecular magnets. We explore their effects on the distribution of the valence electrons and their contribution to the exchange processes. The present study is focused on a spin-half dimer with nonequivalent exchange bridges. Here, we derive an effective Hamiltonian that allows for an accurate estimation of the observables associated to the magnetic properties of the magnet. Our results are compared to those obtained by means of the conventional Heisenberg model that usually fails.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا