Do you want to publish a course? Click here

Magnetic Exchange in Spin Clusters

138   0   0.0 ( 0 )
 Added by Miroslav Georgiev
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the role of exchange bridges in molecular magnets. We explore their effects on the distribution of the valence electrons and their contribution to the exchange processes. The present study is focused on a spin-half dimer with nonequivalent exchange bridges. Here, we derive an effective Hamiltonian that allows for an accurate estimation of the observables associated to the magnetic properties of the magnet. Our results are compared to those obtained by means of the conventional Heisenberg model that usually fails.



rate research

Read More

Present routes to produce magnetic organic-based materials adopt a common strategy: the use of magnetic species (atoms, polyradicals, etc.) as building blocks. We explore an alternative approach which consists of selective hydrogenation of Polycyclic Aromatic Hydrocarbons. Self-Consistent-Field (SCF) (Hartree-Fock and DFT) and multi-configurational (CISD and MCSCF) calculations on coronene and corannulene, both hexa-hydrogenated, show that the formation of stable high spin species is possible. The spin of the ground states is discussed in terms of the Hund rule and Liebs theorem for bipartite lattices (alternant hydrocarbons in this case). This proposal opens a new door to magnetism in the organic world.
Correlation between geometry, electronic structure and magnetism of solids is both intriguing and elusive. This is particularly strongly manifested in small clusters, where a vast number of unusual structures appear. Here, we employ density functional theory in combination with a genetic search algorithm, GGA$+U$ and a hybrid functional to determine the structure of gas phase Fe$_{x}$O$_{y}^{+/0}$ clusters. For Fe$_{x}$O$_{y}$ cation clusters we also calculate the corresponding vibration spectra and compare them with experiments. We successfully identify Fe$_{3}$O$_{4}^{+}$, Fe$_{4}$O$_{5}^{+}$, Fe$_{4}$O$_{6}^{+}$, Fe$_{5}$O$_{7}^{+}$ and propose structures for Fe$_{6}$O$_{8}^{+}$. Within the triangular geometric structure of Fe$_{3}$O$_{4}^{+}$ a non-collinear, ferrimagnetic and ferromagnetic state are comparable in energy. Fe$_{4}$O$_{5}^{+}$ and Fe$_{4}$O$_{6}^{+}$ are ferrimagnetic with a residual magnetic moment of 1~muB{} due to ionization. Fe$_{5}$O$_{7}^{+}$ is ferrimagnetic due to the odd number of Fe atoms. We compare the electronic structure with bulk magnetite and find Fe$_{4}$O$_{5}^{+}$, Fe$_{4}$O$_{6}^{+}$, Fe$_{6}$O$_{8}^{+}$ to be mixed valence clusters. In contrast, in Fe$_{3}$O$_{4}^{+}$ and Fe$_{5}$O$_{7}^{+}$ all Fe are found to be trivalent.
Small lanthanide clusters have interesting magnetic properties, but their structures are unknown. We have identified the structures of small terbium cluster cations Tb (n = 5-9) in the gas phase, by analysis of their vibrational spectra. The spectra have been measured via IR multiple photon dissociation of their complexes with Ar atoms in the 50-250 1/cm range with an infrared free electron laser. Density functional theory calculations using a 4f-in-core effective core potential (ECP) accurately reproduce the experimental far-IR spectra. The ECP corresponds to a 4f85d16s2 trivalent configuration of terbium. The assigned structures are similar to those observed in several other transition metal systems. From this, we conclude that the bonding in Tb clusters is through the interactions between the 5d and 6s electrons, and that the 4f electrons have only an indirect effect on the cluster structures.
In spin-density-functional theory for noncollinear magnetic materials, the Kohn-Sham system features exchange-correlation (xc) scalar potentials and magnetic fields. The significance of the xc magnetic fields is not very well explored; in particular, they can give rise to local torques on the magnetization, which are absent in standard local and semilocal approximations. We obtain exact benchmark solutions for two electrons on four-site extended Hubbard lattices over a wide range of interaction strengths, and compare exact xc potentials and magnetic fields with approximations obtained from orbital-dependent xc functionals. The xc magnetic fields turn out to play an increasingly important role as systems becomes more and more correlated and the electrons begin to localize; the effects of the xc torques, however, remain relatively minor. The approximate xc functionals perform overall quite well, but tend to favor symmetry-broken solutions for strong interactions.
Some properties of small and medium sodium clusters are described within the RPA approach using a projected spherical single particle basis. The oscillator strengths calculated with a Schiff-like dipole transition operator and folded with Lorentzian functions are used to calculate the photoabsorbtion cross section spectra. The results are further employed to establish the dependence of the plasmon frequency on the number of cluster components. Static electric polarizabilities of the clusters excited in a RPA dipole state are also calculated. Comparison of our results with the corresponding experimental data show an overall good agreement.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا