Energy absorption of xenon clusters embedded in helium nanodroplets from strong femtosecond laser pulses is studied theoretically. Compared to pure clusters we find earlier and more efficient energy absorption in agreement with experiments. This effect is due to resonant absorption of the helium nanoplasma whose formation is catalyzed by the xenon core. For very short double pulses with variable delay both plasma resonances, due to the helium shell and the xenon core, are identified and the experimental conditions are given which should allow for a simultaneous observation of both of them.
We demonstrate ultrafast resonant energy absorption of rare-gas doped He nanodroplets from intense few-cycle (~10 fs) laser pulses. We find that less than 10 dopant atoms ignite the droplet to generate a non-spherical electronic nanoplasma resulting ultimately in complete ionization and disintegration of all atoms, although the pristine He droplet is transparent for the laser intensities applied. Our calculations at those intensities reveal that the minimal pulse length required for ignition is about 9 fs.
A new setup for doping helium nanodroplets by means of laser ablation at kilohertz repetition rate is presented. The doping process is characterized and two distinct regimes of laser ablation are identified. The setup is shown to be efficient and stable enough to be used for spectroscopy, as demonstrated on beam-depletion spectra of lithium atoms attached to helium nanodroplets. For the first time, helium droplets are doped with high temperature refractory materials such as titanium and tantalum. Doping with the non-volatile DNA basis Guanine is found to be efficient and a number of oligomers are detected.
The ionization dynamics of helium droplets in a wide size range from 220 to 10^6 He atoms irradiated with intense femtosecond extreme ultraviolet (XUV) pulses of 10^9 {div} 10^{12} W/cm2 power density is investigated in detail by photoelectron spectroscopy. Helium droplets are resonantly excited in the photon energy range from ~ 21 eV (corresponding to the atomic 1s2s state) up to the atomic ionization potential (IP) at ~ 25 eV. A complex evolution of the electron spectra as a function of droplet size and XUV intensity is observed, ranging from atomic-like narrow peaks due to binary autoionization, to an unstructured feature characteristic of electron emission from a nanoplasma. The experimental results are analyzed and interpreted with the help of numerical simulations based on rate equations taking into account various processes such as multi-step ionization, interatomic Coulombic decay (ICD), secondary inelastic collisions, desorption of electronically excited atoms, collective autoionization (CAI) and further relaxation processes.
Helium tagging in action spectroscopy is an efficient method for measuring the absorption spectrum of complex molecular ions with minimal perturbations to the gas phase spectrum. We have used superfluid helium nanodroplets doped with corannulene to prepare cations of these molecules complexed with different numbers of He atoms. In total we identify 13 different absorption bands from corannulene cations between 5500 {AA} and 6000 {AA}. The He atoms cause a small, chemically induced redshift to the band positions of the corannulene ion. By studying this effect as a function of the number of solvating atoms we are able to identify the formation of solvation structures that are not visible in the mass spectrum. The solvation features detected with the action spectroscopy agree very well with the results of atomistic modeling based on path-integral molecular dynamics simulations. By additionally doping our He droplets with D$_2$, we produce protonated corannulene ions. The absorption spectrum of these ions differs significantly from the case of the radical cations as the numerous narrow bands are replaced by a broad absorption feature that spans nearly 2000 {AA} in width.
Interatomic Coulombic decay (ICD) is induced in helium (He) nanodroplets by photoexciting the n=2 excited state of He^+ using XUV synchrotron radiation. By recording multiple coincidence electron and ion images we find that ICD occurs in various locations at the droplet surface, inside the surface region, or in the droplet interior. ICD at the surface gives rise to energetic He^+ ions as previously observed for free He dimers. ICD deeper inside leads to the ejection of slow He^+ ions due to Coulomb explosion delayed by elastic collisions with neighboring He atoms, and to the formation of He_k^+ complexes.